Comparison of experimental and simulated critical heat flux tests with various cladding alloys: Sensitivity of iron-chromium-aluminum (FeCrAl) to heat transfer coefficients and material properties

2019 ◽  
Vol 353 ◽  
pp. 110295 ◽  
Author(s):  
Jacob P. Gorton ◽  
Soon K. Lee ◽  
Youho Lee ◽  
Nicholas R. Brown
1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 980
Author(s):  
Kairui Tang ◽  
Jingjing Bai ◽  
Siyu Chen ◽  
Shiwei Zhang ◽  
Jie Li ◽  
...  

With the rapid development of electronics, thermal management has become one of the most crucial issues. Intense research has focused on surface modifications used to enhance heat transfer. In this study, multilayer copper micromeshes (MCMs) are developed for commercial compact electronic cooling. Boiling heat transfer performance, including critical heat flux (CHF), heat transfer coefficients (HTCs), and the onset of nucleate boiling (ONB), are investigated. The effect of micromesh layers on the boiling performance is studied, and the bubbling characteristics are analyzed. In the study, MCM-5 shows the highest critical heat flux (CHF) of 207.5 W/cm2 and an HTC of 16.5 W(cm2·K) because of its abundant micropores serving as nucleate sites, and outstanding capillary wicking capability. In addition, MCMs are compared with other surface structures in the literature and perform with high competitiveness and potential in commercial applications for high-power cooling.


2017 ◽  
Vol 4 ◽  
pp. 33-41 ◽  
Author(s):  
Nikolai Kobasko ◽  
Anatolii Moskalenko ◽  
Petro Lohvynenko ◽  
Volodymyr Dobryvechir

In the paper the results of testing three types of FUCHS oils: Thermisol QH 120, Thermisol QH 10 and Thermisol QB 46 are discussed. The main attention is paid to critical heat flux densities evaluation because they create a basis for optimizing cooling intensity of any liquid quenchant. In the paper is underlined that any film boiling during quenching is undesirable since it is a reason for big distortion and non-uniform surface harness. It is shown that intensive quenching decreases distortion of steel parts during quenching. To eliminate film boiling during quenching in mineral oils, optimal temperature of oil should be chosen which maximize the first critical heat flux density and special additives should be used to decrease initial heat flux by creating surface micro-coating. Along with the evaluation of heat transfer coefficients, critical heat flux densities inherent to liquid quenchant must be measured first to optimize quenching processes. International DATABASE on cooling characteristics of liquid quenchants must include critical heat flux densities, initial heat flux densities, and heat transfer coefficients allowing optimizing and governing quenching processes.


1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.


Author(s):  
Mostafa Morovati ◽  
Hitesh Bindra ◽  
Shuji Esaki ◽  
Masahiro Kawaji

Pool boiling experiments have been conducted with a self-rewetting fluid consisting of an aqueous butanol solution to study the boiling heat transfer enhancement at pressures of 1 ∼ 4 bars. Although self-rewetting fluids have been used to enhance the performance of heat pipes, boiling heat transfer characteristics are yet to be fully understood especially at pressures above atmospheric. Pool boiling experiments with aqueous butanol solutions were performed using an electrically heated platinum wire to obtain pool boiling heat transfer data up to the Critical Heat Flux (CHF). Aqueous butanol solutions with butanol concentrations 2–7% showed enhanced heat transfer coefficients and CHF data at various pressure levels. In comparison to water, aqueous butanol solutions showed 20–270% higher values of CHF at pressures up to 4 bars. The bubble sizes were also observed to be significantly smaller in self-rewetting fluids compared to those in water at the same pressure. This observation was consistent even at higher pressures. However, for the highest butanol concentration tested (7%), the CHF enhancement was diminished at higher pressures.


Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


Sign in / Sign up

Export Citation Format

Share Document