BLZ945 derivatives for PET imaging of colony stimulating factor-1 receptors in the brain

Author(s):  
Berend van der Wildt ◽  
Zheng Miao ◽  
Samantha T. Reyes ◽  
Jun H. Park ◽  
Jessica L. Klockow ◽  
...  
2017 ◽  
Vol 7 (1) ◽  
pp. 0-0
Author(s):  
G. Paszko-Patej ◽  
D. Sienkiewicz ◽  
B. Okurowska-Zawada ◽  
W. Kułak

Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein that stimulates the bone marrow to produce granulocytes and stem cells and release them into the blood. Recent studies demonstrated the presence of CSF-receptor (G-CSFR) system in the brain and spinal cord, and their roles in neuroprotection and neural tissue repair, as well as improvement in functional recovery. G-CSF exerts neuroprotective actions through the inhibition of apoptosis and inflammation, and the stimulation of neurogenesis. This review highlights recent studies on the potential use of G-CSF in cerebral palsy.


Author(s):  
Sean S. Tanzey ◽  
Xia Shao ◽  
Jenelle Stauff ◽  
Janna Arteaga ◽  
Phillip Sherman ◽  
...  

Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases and, in this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high specific activity. Preliminary PET imaging with [11C]AZ683 revealed no brain uptake in rodents and nonhuman primates suggesting that [11C]AZ683 is a poor candidate for imaging neuroinflammation, but that it could still be useful for peripheral imaging of inflammation.


2016 ◽  
Vol 37 (7) ◽  
pp. 2383-2395 ◽  
Author(s):  
Minshu Li ◽  
Zhiguo Li ◽  
Honglei Ren ◽  
Wei-Na Jin ◽  
Kristofer Wood ◽  
...  

Microglia are the first responders to intracerebral hemorrhage, but their precise role in intracerebral hemorrhage remains to be defined. Microglia are the only type of brain cells expressing the colony-stimulating factor 1 receptor, a key regulator for myeloid lineage cells. Here, we determined the effects of a colony-stimulating factor 1 receptor inhibitor (PLX3397) on microglia and the outcome in the context of experimental mouse intracerebral hemorrhage. We show that PLX3397 effectively depleted microglia, and the depletion of microglia was sustained after intracerebral hemorrhage. Importantly, colony-stimulating factor 1 receptor inhibition attenuated neurodeficits and brain edema in two experimental models of intracerebral hemorrhage induced by injection of collagenase or autologous blood. The benefit of colony-stimulating factor 1 receptor inhibition was associated with reduced leukocyte infiltration in the brain and improved blood–brain barrier integrity after intracerebral hemorrhage, and each observation was independent of lesion size or hematoma volume. These results demonstrate that suppression of colony-stimulating factor 1 receptor signaling ablates microglia and confers protection after intracerebral hemorrhage.


2016 ◽  
Vol 36 (11) ◽  
pp. 1978-1991 ◽  
Author(s):  
De S Shang ◽  
Yi M Yang ◽  
Hu Zhang ◽  
Li Tian ◽  
Jiu S Jiang ◽  
...  

Although tight junctions between human brain microvascular endothelial cells in the blood–brain barrier prevent molecules or cells in the bloodstream from entering the brain, in Alzheimer’s disease, peripheral blood monocytes can “open” these tight junctions and trigger subsequent transendothelial migration. However, the mechanism underlying this migration is unclear. Here, we found that the CSF2RB, but not CSF2RA, subunit of the granulocyte-macrophage colony-stimulating factor receptor was overexpressed on monocytes from Alzheimer’s disease patients. CSF2RB contributes to granulocyte-macrophage colony-stimulating factor-induced transendothelial monocyte migration. Granulocyte-macrophage colony-stimulating factor triggers human brain microvascular endothelial cells monolayer tight junction disassembly by downregulating ZO-1 expression via transcription modulation and claudin-5 expression via the ubiquitination pathway. Interestingly, intracerebral granulocyte-macrophage colony-stimulating factor blockade abolished the increased monocyte infiltration in the brains of APP/PS1 Alzheimer’s disease model mice. Our results suggest that in Alzheimer’s disease patients, high granulocyte-macrophage colony-stimulating factor levels in the brain parenchyma and cerebrospinal fluid induced blood–brain barrier opening, facilitating the infiltration of CSF2RB-expressing peripheral monocytes across blood–brain barrier and into the brain. CSF2RB might be useful as an Alzheimer’s disease biomarker. Thus, our findings will help to understand the mechanism of monocyte infiltration in Alzheimer’s disease pathogenesis.


2018 ◽  
Vol 11 (4) ◽  
pp. 136 ◽  
Author(s):  
Sean Tanzey ◽  
Xia Shao ◽  
Jenelle Stauff ◽  
Janna Arteaga ◽  
Phillip Sherman ◽  
...  

Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia and macrophages. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases. In this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high molar activity. Preliminary PET imaging with [11C]AZ683 revealed low brain uptake in rodents and nonhuman primates, suggesting that imaging neuroinflammation could be challenging but that the radiopharmaceutical could still be useful for peripheral imaging of inflammation.


Sign in / Sign up

Export Citation Format

Share Document