COMPARISON OF SHORT-TERM HYPOCALORIC HIGH PROTEIN DIETS WITH A HYPOCALORIC MEDITERRANEAN DIET: EFFECT ON BODY COMPOSITION AND HEALTH-RELATED BLOOD MARKERS OF OVERWEIGHT AND SEDENTARY YOUNG PARTICIPANTS

Nutrition ◽  
2021 ◽  
pp. 111365
Author(s):  
Konstantinos Feidantsis ◽  
Spyridon Methenitis ◽  
Kleopatra Ketselidi ◽  
Kiriaki Vagianou ◽  
Petros Skepastianos ◽  
...  
2018 ◽  
Vol 120 (11) ◽  
pp. 1310-1318
Author(s):  
David Allaway ◽  
Carlos H. de Alvaro ◽  
Adrian Hewson-Hughes ◽  
Ruth Staunton ◽  
Penelope Morris ◽  
...  

AbstractThe protein leverage hypothesis proposes that the need to prioritise protein intake drives excess energy intake (EI) when the dietary ratio of protein to fat and carbohydrate is reduced. We hypothesised that cats may become prone to overconsuming energy content when moderate protein diets were offered, and considered the potential influence of fat and carbohydrate on intake. To determine the effect of dietary protein and macronutrient profile (MNP) on EI, weight and body composition, cats (1–4 years) were offered food in excess of energy requirements (ER). A total of six diets were formulated, containing moderate (approximately 7 % w/w; approximately 22 % metabolisable energy (ME)) or high (approximately 10 % w/w; approximately 46 % ME) protein and varying levels of carbohydrate and fat. For 4 weeks, 120 cats were offered 100 % of their individual ER of a diet at the MNP selected by adult cats (50:40:10 protein energy ratio:fat energy ratio:carbohydrate energy ratio). EI, body weight (BW), body composition, activity and palatability were measured. Subsequently, cats were offered one of the six diets at 200 % of their individual ER for 4 weeks when measurements were repeated. Cats offered excess high protein diets had higher EI (kJ/kg) throughout, but at 4 weeks BW was not significantly different to baseline. Cats offered excess moderate protein diets reduced EI and gradually lost weight (average loss of 0·358 (99 % CI 0·388, 0·328) kg), irrespective of fat:carbohydrate and initial palatability. The data do not support the protein leverage hypothesis. Furthermore, cats were able to adapt intake of a wet diet with high protein in an overfeeding environment within 28 d.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Stefan M Pasiakos ◽  
Charles R Wulff ◽  
Nancy E Murphy ◽  
Erin Gaffney‐Stomberg ◽  
Andrew J Young ◽  
...  

1926 ◽  
Vol 67 (1) ◽  
pp. 101-107
Author(s):  
Henry Jackson ◽  
Margaret D. Riggs

1993 ◽  
Vol 264 (6) ◽  
pp. G1057-G1065 ◽  
Author(s):  
C. Moundras ◽  
C. Remesy ◽  
C. Demigne

The aim of the present study was to evaluate the effect of changes in dietary protein level on overall availability of amino acids for tissues. For this purpose, rats were adapted to diets containing various concentrations of casein (7.5, 15, 30, and 60%) and were sampled either during the postprandial or postabsorptive period. In rats fed the protein-deficient diet, glucogenic amino acids (except threonine) tended to accumulate in plasma, liver, and muscles. In rats fed high-protein diets, the hepatic balance of glucogenic amino acids was markedly enhanced and their liver concentrations were consistently depressed. This response was the result of a marked induction of amino acid catabolism (a 45-fold increase of liver threonine-serine dehydratase activity was observed with the 60% casein diet). The muscle concentrations of threonine, serine, and glycine underwent changes parallel to plasma and liver concentrations, and a significant reduction of glutamine was observed. During the postabsorptive period, adaptation to high-protein diets resulted in a sustained catabolism of most glucogenic amino acids, which accentuated the drop in their concentrations (especially threonine) in all the compartments studied. The time course of metabolic adaptation from a 60 to a 15% casein diet has also been investigated. Adaptation of alanine and glutamine metabolism was rapid, whereas that of threonine, serine, and glycine was delayed and required 7-11 days. This was paralleled by a relatively slow decay of liver threonine-serine dehydratase (T-SDH) activity in contrast to the rapid adaptation of pyruvate kinase activity after refeeding a high-carbohydrate diet.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document