Dysregulation of fatty acid synthase mRNA in immortalized human hepatocyte cell lines in response to high glucose and the absence of GLUT2

2004 ◽  
Vol 24 (5) ◽  
pp. 321-336 ◽  
Author(s):  
Raylene A Reimer ◽  
Patricia Leone-Vautravers ◽  
Irène Zbinden ◽  
Curtis C Harris ◽  
Andrea M.A Pfeifer ◽  
...  
Gut ◽  
2019 ◽  
Vol 69 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Li Che ◽  
Wenna Chi ◽  
Yu Qiao ◽  
Jie Zhang ◽  
Xinhua Song ◽  
...  

ObjectiveIncreased de novo fatty acid (FA) synthesis and cholesterol biosynthesis have been independently described in many tumour types, including hepatocellular carcinoma (HCC).DesignWe investigated the functional contribution of fatty acid synthase (Fasn)-mediated de novo FA synthesis in a murine HCC model induced by loss of Pten and overexpression of c-Met (sgPten/c-Met) using liver-specificFasnknockout mice. Expression arrays and lipidomic analysis were performed to characterise the global gene expression and lipid profiles, respectively, of sgPten/c-Met HCC from wild-type andFasnknockout mice. Human HCC cell lines were used for in vitro studies.ResultsAblation ofFasnsignificantly delayed sgPten/c-Met-driven hepatocarcinogenesis in mice. However, eventually, HCC emerged inFasnknockout mice. Comparative genomic and lipidomic analyses revealed the upregulation of genes involved in cholesterol biosynthesis, as well as decreased triglyceride levels and increased cholesterol esters, in HCC from these mice. Mechanistically, loss ofFasnpromoted nuclear localisation and activation of sterol regulatory element binding protein 2 (Srebp2), which triggered cholesterogenesis. Blocking cholesterol synthesis via the dominant negative form of Srebp2 (dnSrebp2) completely prevented sgPten/c-Met-driven hepatocarcinogenesis inFasnknockout mice. Similarly, silencing ofFASNresulted in increasedSREBP2activation and hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase (HMGCR)expression in human HCC cell lines. Concomitant inhibition of FASN-mediated FA synthesis and HMGCR-driven cholesterol production was highly detrimental for HCC cell growth in culture.ConclusionOur study uncovers a novel functional crosstalk between aberrant lipogenesis and cholesterol biosynthesis pathways in hepatocarcinogenesis, whose concomitant inhibition might represent a therapeutic option for HCC.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4490-4490 ◽  
Author(s):  
Ravi Dashnamoorthy ◽  
Nassera Abermil ◽  
Afshin Behesti ◽  
Paige Kozlowski ◽  
Frederick Lansigan ◽  
...  

Abstract Background: Fatty acid (FA) metabolism is altered in several cancers through increased de novo synthesis of lipids via up-regulation fatty acid synthase (FASN) and increased utilization of lipids via β-oxidation. We investigated the dependence of DLBCL survival on FA metabolism. In addition, we examined novel FASN inhibitors TVB3567 and TVB3166 in comparison with cerulenin for the effects on cell survival and PI3K and MAPK-related biological pathways associated with tumor-related FA metabolism in DLBCL. Methods: FASN inhibitors, TVB3567 and TVB3166 (3V Biosciences, CA), cerulenin (FASN inhibitor), orlistat (anti-lipoprotein lipase (LPL) and FASN), PI3K/mTOR, and MEK small molecule inhibitors were studied in OCI-LY3, OCI-LY19, SUDHL4, SUDHL6, and SUDHL10 DLBCL cell lines for the effects of FA inhibition on lipid metabolism, cell signaling, and cell death. The effects of FASN inhibition on global gene expression profile (GEP) were also determined with Affymetrix Human 2.0 ST Genechip with Gene set enrichment analysis (GSEA). We also utilized short hairpin RNA interference (shRNA) to study interactions between FASN and PI3K/MAPK signaling. Finally, AutoDock Vina software (autodock.scripps.edu) was utilized to analyze drug target (FASN enzyme) binding affinity and assist in the design of FASN inhibitors with higher target binding affinity. Results: DLBCL cell lines OCI-LY3, SUDHL4, and SUDHL6 grown in the presence of lipoprotein-depleted serum showed exquisite sensitivity to lipid deprivation resulting in near complete cytotoxicity by MTT. Lipid deprivation-induced apoptotic cell death, detected as cleaved caspase 3 and PARP and Annexin-V/PI positivity, in these cells. Further, these effects were completely rescued by Very Low Density Lipoprotein (VLDL) supplementation to growth medium in SUDHL4 confirming the high lipid-dependency on cell survival in DLBCL. Treatment with pharmacological inhibitors of FASN (ie, TVB3567, TVB3166, cerulenin, or orlistat) resulted in a dose- and time-dependent reduction in cell viability in all DLBCL cell lines. Ingenuity Pathway Analysis (IPA) from GEP with cerulenin-treated OCI-LY3 showed prominent suppression of CD40, TNF, and NFκB dependent inflammatory responses as well as activation of apoptosis as predominant biological activities including significant down-regulation of genes involved in Krebs cycle and p38 MAPK pathways. Interestingly, upstream regulation by IPA predicted activation of MEK/ERK and MYC-dependent functions; and in OCI-LY3 with shRNA knock down of FASN, we observed constitutive activation of ERK as detected with increased phosphorylation by western blot. Activation of MEK/ERK and MYC is expected in part owing to metabolic stress induced by FASN inhibition. Considering the impact of MEK/ERK pathways on lipid metabolism, we next investigated the impact of MEK/ERK on FA metabolism. FASN was significantly decreased following MEK or ERK shRNA in OCILY-3 and SUDHL10 cells. Similarly, pharmacological inhibition of MEK or PI3K/mTOR (using novel small molecule agents AZD6244 (selumetinib) or BEZ235, respectively) resulted in marked down-regulation of FASN expression. Based on these results, FASN inhibition appears to a promising therapeutic target for the treatment of DLBCL, however attaining clinical efficacy with existing compounds require the effective drug concentration to be within the nanomolar range. Thus, we utilized AutoDock to determine drug docking enzyme inhibition constant (ki). We identified high ki values of 33μM and 180μM for Cerulenin and Orilstat, respectively. Therefore, we have developed/constructed modified novel and potent anti-FA compounds with ki <1μM that are currently being investigated. Conclusions: Collectively, we demonstrated that DLBCL cell survival is highly dependent on FA metabolism and that targeting lipid metabolism may be harnessed as a potential therapeutic strategy. We also showed that MEK/ERK-dependent mechanisms are intimately involved in promoting lipid addiction in DLBCL cells. Further investigation is warranted to delineate the mechanisms through which MEK/ERK regulate FASN expression and to determine in vivo implications of FASN inhibition on DLBCL tumor growth. In addition, continued development, design, and enhancement are needed to construct the most optimal anti-FA therapeutic agents. Disclosures Lansigan: Teva Pharmaceuticals: Research Funding; Spectrum Pharmaceuticals: Research Funding.


Author(s):  
Randolph A Hennigar ◽  
Mildred Pochet ◽  
Dirk A Hunt ◽  
Aron E Lukacher ◽  
Virginia J Venema ◽  
...  

Author(s):  
Karine A. Smans ◽  
Sabine D. Breucker ◽  
Norbert Esser ◽  
Erwin Fraiponts ◽  
Ron Gilissen ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4979-4979
Author(s):  
Shahab Uddin ◽  
Azhar Hussain ◽  
Prashant Bavi ◽  
Khawla Al-Kuraya

Abstract Diffuse Large B-cell Lymphoma (DLBCL) is considered to be the most common type of lymphoma in adults, accounting for 30–40 percent of cases of non-Hodgkin’s lymphoma. The incidence of DLBCL is about 40–60% in Saudi Arabian population. The reason of high rate for DLBCL in Saudi Arabian population is not known, however recent studies suggests that differences in molecular signature as compared to western population accounts for this incidence. Although patients with DLBCL are potentially curable with combination chemotherapy, the disease proves fatal in approximately 50% of patients. The cause of most DLBCLs remains unknown; however several studies suggest that dysregulated survival/apoptosis or defective repair pathways have been implicated. Many human cancers, particularly those with a poor prognosis express high levels of fatty acid synthase (FASN), a key metabolic enzyme linked to the synthesis of membrane phospholipids in cancer cells. Over-expression of FASN can be largely attributed to activation of phosphatidylinositol-3′-kinase (PI3K)/AKT pathway. However, the role of FASN in the pathogenesis of DLBCL has not been elucidated. Therefore, in this study, we investigated the role of FASN in a large series (301) of DLBCL patient samples and a panel of DLBCL cell lines. Using immunohistochemistry, FASN was detected in appreciable number of DLBCL tumors and was strongly associated with the expression of p-AKT protein. We next examined the effect of C-75, a synthetic slow binding inhibitor of FASN activity on DLBCL cell lines (SUDHL4, SUDHL5, SUDHL8 and OCI-LY19) in vitro and found that C-75 treatment inhibits growth and induces apoptosis in all 4 DLBCL cell linesused in the study. We show based on in vitro studies employing a variety of experimental tools using different FASN inhibitors, FASN siRNA and AKT siRNA that FASN exert its oncogenic action in DLBCL cells via activated AKT. Our data show that inhibition of FASN leads to de-phosphorylation of p-AKT and it’s down stream effectors, FOXO1 and GSK-3. This, in turn leads to activation of the intrinsic apoptotic pathway by, initially causing conformational changes of the Bax protein leading to changes in the mitochondrial membrane potential and release of cytochrome c into cytosole. This causes activation of caspases-9 and -3 and cleavage of PARP. zVAD-fmk, a universal inhibitor of caspases prevents caspase-9 and -3 activation and abrogates apoptosis induced by C-75 treatment. Finally, C-75 treament of DLBCL cell lines causes down-regulation of the inhibitor of apoptosis proteins, XIAP, cIAP1 and Survivin. In summary, data presented here demonstrate a significant correlation between the expression of FASN and active AKT in DLBCL and indicate that inhibition of PI3K/AKT signaling synergize the FAS inhibitors to induce apoptosis in DLBCL cell lines with constitutively active AKT. This may have significant clinical implications. Therefore, FASN has become a promising target for anti cancer drug development.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4787-4787
Author(s):  
Shahab Uddin ◽  
Azhar Hussain ◽  
Prashant Bavi ◽  
Khawla Al-Kuraya

Abstract Abstract 4787 Targeted approaches are expected to revolutionize cancer treatment in near future. Fatty acid synthase (FASN), the enzyme responsible for de novo synthesis of fatty acids has emerged as a potential therapeutic target for several cancers however its role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated.. Therefore, we investigated the expression of FASN in tissue micro array cohort of 301 DLBCL patients. FASN was found to be expressed in 62.6% (162/259) DLBCL samples and was seen in highly proliferative tumors manifested by high Ki67 (p<0.0001). Significant association was found between tumors expressing high FASN and c-Met tyrosine kinase (p<0.0002) as well as p-AKT (p=0.0309). In vitro, pharmacological FASN inhibition and SiRNA targeted against FASN triggered caspase dependent apoptosis and suppressed expression of c-Met kinase in DLBCL cell lines which further highlighted the molecular link between FASN and c-Met kinase. Finally, simultaneous targeting of FASN and c-Met with specific chemical inhibitors induced a synergistically stimulated apoptotic response in DLBCL cell lines. These findings provide evidence of an active role of FASN in DLBCL evolution by specifically regulating tyrosine kinases related to malignant transformation strongly suggest that targeting FASN may have therapeutic value in treatment of DLBCL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document