Human gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in LPS-induced and APP/PS1 mouse models of Alzheimer's disease

Author(s):  
Jun Go ◽  
Dong-Ho Chang ◽  
Young-Kyoung Ryu ◽  
Hye-Yeon Park ◽  
In-Bok Lee ◽  
...  
2021 ◽  
pp. 1-20
Author(s):  
Daniel Cuervo-Zanatta ◽  
Jaime Garcia-Mena ◽  
Claudia Perez-Cruz

Background: Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer’s disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. Objective: The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. Methods: Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. Results: We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. Conclusion: This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.


2019 ◽  
Vol 15 (10) ◽  
pp. 1357-1366 ◽  
Author(s):  
Binyin Li ◽  
Yixi He ◽  
Jianfang Ma ◽  
Pei Huang ◽  
Juanjuan Du ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nesrine S. El Sayed ◽  
Esraa A. Kandil ◽  
Mamdooh H. Ghoneum

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.


2001 ◽  
Vol 67 ◽  
pp. 195-202 ◽  
Author(s):  
Karen Duff

A range of transgenic mice have been created to model Alzheimer's disease. These include mice expressing human forms of the amyloid precursor protein, the presenilins and, more recently, tau. Several of the models develop features of the disease including amyloid pathology, cholinergic deficits, neurodegeneration and cognitive impairment. Progress in the characterization and use of these model animals is discussed.


2021 ◽  
Author(s):  
Eduardo Pauls ◽  
Sergi Bayod ◽  
Lídia Mateo ◽  
Víctor Alcalde ◽  
Teresa Juan-Blanco ◽  
...  

AbstractAlzheimer’s disease (AD) is the most common form of dementia. Over fifty years of intense research have revealed many key elements of the biology of this neurodegenerative disorder. However, our understanding of the molecular bases of the disease is still incomplete, and the medical treatments available for AD are mainly symptomatic and hardly effective. Indeed, the robustness of biological systems has revealed that the modulation of a single target is unlikely to yield the desired outcome and we should therefore move from gene-centric to systemic therapeutic strategies. Here we present the complete characterization of three murine models of AD at different stages of the disease (i.e. onset, progression and advanced). To identify genotype-to-phenotype relationships, we combine the cognitive assessment of these mice with histological analyses and full transcriptional and protein quantification profiling of the hippocampus. Comparison of the gene and protein expression trends observed in AD progression and physiological aging revealed certain commonalities, such as the upregulation of microglial and inflammation markers. However, although AD models show accelerated aging, other factors specifically associated with Aβ pathology are involved. Despite the clear correlation between mRNA and protein levels of the dysregulated genes, we discovered a few proteins whose abundance increases with AD progression, while the corresponding transcript levels remain stable. Indeed, we show that at least two of these proteins, namely lfit3 and Syt11, co-localize with Aβ plaques in the brain. Finally, we derived specific Aβ-related molecular AD signatures and looked for drugs able to globally revert them. We found two NSAIDs (dexketoprofen and etodolac) and two anti-hypertensives (penbutolol and bendroflumethiazide) that overturn the cognitive impairment in AD mice while reducing Aβ plaques in the hippocampus and partially restoring the physiological levels of AD signature genes to wild-type levels.TeaserThe comprehensive characterization of three AD mouse models reveals disease signatures that we used to identify approved drugs able to modify the etiology of the pathology and overturn cognitive impairment.


Author(s):  
Xianfeng Huang ◽  
Jinyao Yang ◽  
Xi Huang ◽  
Zaijun Zhang ◽  
Jianjun Liu ◽  
...  

Alzheimer's disease (AD), one of the most common neurodegenerative diseases, has no effective treatment. We studied the potential effects of tetramethylpyrazine (TMP), an alkaloid in the rhizome of Ligusticum chuanxiong Hort. used in Traditional Chinese Medicine (chuānxiong) to treat ischemic stroke, on AD progression in two AD mouse models. Eight-month-old 3xTg-AD mice received TMP treatment (10 mg/kg/d) for 1 month, and 4-month-old APP/PS1-AD mice received TMP treatment (10 mg/kg/d) for 2 months. Behavioral tests, including step-down passive avoidance (SDA), new object recognition (NOR), Morris water maze (MWM), and Contextual fear conditioning test showed that TMP significantly improved the learning and memory of the two AD-transgenic mice. In addition, TMP reduced beta-amyloid (Aß) levels and tau phosphorylation (p-tau). Venny map pointed out that 116 proteins were commonly changed in 3xTg mice vs. wild type (WT) mice and TMP-treated mice vs. -untreated mice. The same 130 proteins were commonly changed in APP/PS1 mice vs. WT mice and TMP-treated mice vs. -untreated mice. The functions of the common proteins modified by TMP in the two models were mainly involved in mitochondrial, synaptic, cytoskeleton, ATP binding, and GTP binding. Mitochondrial omics analysis revealed 21 and 20 differentially expressed mitochondrial proteins modified by TMP in 3xTg-AD mice and APP/PS1 mice, respectively. These differential proteins were located in the mitochondrial inner membrane, mitochondrial outer membrane, mitochondrial gap, and mitochondrial matrix, and the function of some proteins is closely related to oxidative phosphorylation (OXPHOS). Western-blot analysis confirmed that TMP changed the expression of OXPHOS complex proteins (sdhb, ndufa10, uqcrfs1, cox5b, atp5a) in the hippocampus of the two AD mice. Taken together, we demonstrated that TMP treatment changed the hippocampal proteome, reduced AD pathology, and reduced cognitive impairment in the two AD models. The changes might be associated with modification of the mitochondrial protein profile by TMP. The results of the study suggest that TMP can improve the symptoms of AD.


2021 ◽  
Vol 22 (11) ◽  
pp. 5549
Author(s):  
Tsuyoshi Nakai ◽  
Kiyofumi Yamada ◽  
Hiroyuki Mizoguchi

Alzheimer’s disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document