scholarly journals Numerical study of closed rigid fish cages in waves and comparison with experimental data

2021 ◽  
Vol 233 ◽  
pp. 109210
Author(s):  
Biao Su ◽  
Andrei Tsarau ◽  
Per Christian Endresen ◽  
David Kristiansen ◽  
Pål Furset Lader
2015 ◽  
Vol 5 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Benzhen Yao ◽  
Zhiqing Wang ◽  
Tiancun Xiao ◽  
Fahai Cao ◽  
Peter P. Edwards ◽  
...  

1996 ◽  
Vol 118 (3) ◽  
pp. 592-597 ◽  
Author(s):  
T. S. Zhao ◽  
P. Cheng

An experimental and numerical study has been carried out for laminar forced convection in a long pipe heated by uniform heat flux and subjected to a reciprocating flow of air. Transient fluid temperature variations in the two mixing chambers connected to both ends of the heated section were measured. These measurements were used as the thermal boundary conditions for the numerical simulation of the hydrodynamically and thermally developing reciprocating flow in the heated pipe. The coupled governing equations for time-dependent convective heat transfer in the fluid flow and conduction in the wall of the heated tube were solved numerically. The numerical results for time-resolved centerline fuid temperature, cycle-averaged wall temperature, and the space-cycle averaged Nusselt number are shown to be in good agreement with the experimental data. Based on the experimental data, a correlation equation is obtained for the cycle-space averaged Nusselt number in terms of appropriate dimensionless parameters for a laminar reciprocating flow of air in a long pipe with constant heat flux.


Author(s):  
Hoden A. Farah ◽  
Frank K. Lu ◽  
Jim L. Griffin

Abstract A detail numerical study of detonation propagation and interaction with a flame arrestor product was conducted. The simulation domain was based on the detonation flame arrestor validation test setup. The flame arrestor element was modeled as a porous zone using the Forchheimer equation. The coefficients of the Forchheimer equation were determined using experimental data. The Forchheimer equation was incorporated into the governing equations for axisymmetric reactive turbulent flow as a momentum sink. A 21-step elementary reaction mechanism with 10 species was used to model the stoichiometric oxyhydrogen detonation. Different cases of detonation propagation including inviscid, viscous adiabatic, and viscous with heat transfer and a porous zone were studied. A detail discussion of the detonation propagation and effect of the arrestor geometry, the heat transfer and the porous zone are presented. The inviscid numerical model solutions of the detonation propagation parameters are compared to one-dimensional analytical solution for verification. The viscous solutions are qualitatively compared to historical experimental data which shows very similar trend. The effect of the porous media parameters on shock transmission and re-initiation of detonation is presented.


Author(s):  
Claudio Braccesi ◽  
Filippo Cianetti ◽  
Renzo Scaletta

The present paper illustrates an evaluation method developed by the authors to quantify the index of motion sickness incidence (MSI) in railways motion conditions. This index is formerly defined in literature to quantify diseases coming from low frequency motions (kinetosis). The proposed method, suggested as alternative to the only one existing in reference norm, involves PCT index, well known in railways context, and weighting curves for accelerometric signals, which are also specified in railways regulations. The approach of the method, consistent with the theoretical model, developed by the authors themselves in previous works, allows to obtain MSI index versus time and/or track progressive distance. The model is validated through comparison with experimental data available in literature and with measures recorded and obtained on regular trains during tests performed in Slovenia (EU).


Sign in / Sign up

Export Citation Format

Share Document