Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow

1996 ◽  
Vol 118 (3) ◽  
pp. 592-597 ◽  
Author(s):  
T. S. Zhao ◽  
P. Cheng

An experimental and numerical study has been carried out for laminar forced convection in a long pipe heated by uniform heat flux and subjected to a reciprocating flow of air. Transient fluid temperature variations in the two mixing chambers connected to both ends of the heated section were measured. These measurements were used as the thermal boundary conditions for the numerical simulation of the hydrodynamically and thermally developing reciprocating flow in the heated pipe. The coupled governing equations for time-dependent convective heat transfer in the fluid flow and conduction in the wall of the heated tube were solved numerically. The numerical results for time-resolved centerline fuid temperature, cycle-averaged wall temperature, and the space-cycle averaged Nusselt number are shown to be in good agreement with the experimental data. Based on the experimental data, a correlation equation is obtained for the cycle-space averaged Nusselt number in terms of appropriate dimensionless parameters for a laminar reciprocating flow of air in a long pipe with constant heat flux.

Author(s):  
M. Fakoor-Pakdaman ◽  
M. Andisheh-Tadbir ◽  
Majid Bahrami

A new all-time model is developed to predict transient laminar forced convection heat transfer inside a circular tube under arbitrary time-dependent heat flux. Slug flow condition is assumed for the velocity profile inside the tube. The solution to the time-dependent energy equation for a step heat flux boundary condition is generalized for arbitrary time variations in surface heat flux using a Duhamel’s integral technique. A cyclic time-dependent heat flux is considered and new compact closed-form relationships are proposed to predict: i) fluid temperature distribution inside the tube ii) fluid bulk temperature and iii) the Nusselt number. A new definition, cyclic fully-developed Nusselt number, is introduced and it is shown that in the thermally fully-developed region the Nusselt number is not a function of axial location, but it varies with time and the angular frequency of the imposed heat flux. Optimum conditions are found which maximize the heat transfer rate of the unsteady laminar forced-convective tube flow. We also performed an independent numerical simulation using ANSYS to validate the present analytical model. The comparison between the numerical and the present analytical model shows great agreement; a maximum relative difference less than 5.3%.


2012 ◽  
Vol 249-250 ◽  
pp. 443-451
Author(s):  
Jing Zhou Zhang ◽  
Xiao Ming Tan ◽  
Xing Dan Zhu

A three-dimensional numerical study on the flow and heat transfer characteristics over a rotating disk with bottom wall subjected to uniform heat flux was conducted with the use of RNG k- turbulent model. And some experiments were also made for validation. The effects of rotating angular speed and pin configuration on the temperature maps and convective heat transfer characte-ristics on rotating surface are analyzed. As the increase of rotating velocity, the impingement of pumping jet on the centre of rotating disk became stronger and the transition from laminar to turbu-lent occurred at the outer radius of rotating disk, which resulted in heat transfer enhancement. The pins on the disk made the pumping action of a rotating disk weaker. Simultaneously, they also acted as disturbing elements to the cyclone flow near the rotating disk surface, which made the overall heat transfer to be enhanced. Under the same extend areas of different pins, needle pin has higher convective heat transfer capacity than the discrete ring pin.


2006 ◽  
Vol 129 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Kamil Kahveci

This numerical study looks at laminar natural convection in an enclosure divided by a partition with a finite thickness and conductivity. The enclosure is assumed to be heated using a uniform heat flux on a vertical wall, and cooled to a constant temperature on the opposite wall. The governing equations in the vorticity-stream function formulation are solved by employing a polynomial-based differential quadrature method. The results show that the presence of a vertical partition has a considerable effect on the circulation intensity, and therefore, the heat transfer characteristics across the enclosure. The average Nusselt number decreases with an increase of the distance between the hot wall and the partition. With a decrease in the thermal resistance of the partition, the average Nusselt number shows an increasing trend and a peak point is detected. If the thermal resistance of the partition further declines, the average Nusselt number begins to decrease asymptotically to a constant value. The partition thickness has little effect on the average Nusselt number.


Author(s):  
M Ghazvini ◽  
M A Akhavan-Behabadi ◽  
M Esmaeili

The present article focuses on analytical and numerical study on the effect of viscous dissipation when nanofluid is used as the coolant in a microchannel heat sink (MCHS). The nanofluid is made from CuO nanoparticles and water. To analyse the MCHS, a modified Darcy equation for the fluid and two-equation model for heat transfer between fluid and solid sections are employed in porous media approach. In addition, to deal with nanofluid heat transfer, a model based on the Brownian motion of nanoparticles is used. The model evaluates the thermal conductivity of nanofluid considering the thermal boundary resistance, nanoparticle diameter, volume fraction, and the fluid temperature. At first, the effects of particle volume fraction on temperature distribution and overall heat transfer coefficient are investigated with and without considering viscous dissipation. After that, the influence of different channel aspect ratios and porosities is studied. The results show that for nanofluid flow in microchannels, the viscous dissipation can be neglected for low volume fractions and aspect ratios only. Finally, the effect of porosity and Brinkman number on the overall Nusselt number is studied, where asymptotic behaviour of the Nusselt number is observed and discussed from the energy balance point of view.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
M. Fakoor-Pakdaman ◽  
Mehdi Andisheh-Tadbir ◽  
Majid Bahrami

A new all-time model is developed to predict transient laminar forced convection heat transfer inside a circular tube under arbitrary time-dependent heat flux. Slug flow (SF) condition is assumed for the velocity profile inside the tube. The solution to the time-dependent energy equation for a step heat flux boundary condition is generalized for arbitrary time variations in surface heat flux using a Duhamel's integral technique. A cyclic time-dependent heat flux is considered and new compact closed-form relationships are proposed to predict (i) fluid temperature distribution inside the tube, (ii) fluid bulk temperature and (iii) the Nusselt number. A new definition, cyclic fully developed Nusselt number, is introduced and it is shown that in the thermally fully developed region the Nusselt number is not a function of axial location, but it varies with time and the angular frequency of the imposed heat flux. Optimum conditions are found which maximize the heat transfer rate of the unsteady laminar forced-convective tube flow. We also performed an independent numerical simulation using ansys fluent to validate the present analytical model. The comparison between the numerical and the present analytical model shows great agreement; a maximum relative difference less than 5.3%.


Author(s):  
Riccardo Mereu ◽  
Emanuela Colombo ◽  
Fabio Inzoli

The present work deals with the design of compact wavy heat exchangers, where high values of heat transfer area per unit volume are looked for in order to reduce size and increase efficiency. A numerical investigation of a rectangular cross-sectional shape geometry, with duct aspect ratio of 7.3, and a corrugation angle of 145° is here proposed. The Reynolds numbers (based on the duct hydraulic diameter) range from 300 to 5000. The numerical analysis is performed by means of a finite volume commercial CFD code. Laminar and Unsteady Reynolds Averaged Navier-Stokes (U-RANS) approaches are applied to a three-dimensional fluid domain over a single module with periodic conditions, respectively for, lower (<1000) and higher (≥1000) Reynolds numbers. Mean velocity and temperature fields are obtained. The average values of Fanning friction factor and Nusselt number are compared with experimental data from literature for the same geometry operating at the same Reynolds number range. For the evaluation of heat transfer quantities obtained in the numerical study the analogy between Sherwood and Nusselt number is used. The numerical results agree with experimental data, by showing the capability of laminar and U-RANS two-equation approach, via RNG model, to capture the mean fluid flow including the Taylor-Gortler instability that appear at low Reynolds numbers. The qualitative comparison of heat results shows an agreement between experimental and numerical data, whereas the extension to quantitative comparison is limited by some deficiencies in experimental correlation for mass/heat transfer analogy.


2008 ◽  
Author(s):  
Veysel Ozceyhan ◽  
Sibel Gunes

A numerical study was undertaken for investigating the heat transfer enhancement in a tube with triangular cross sectioned ribs. The spacing between the ribs were kept constant as a distance of tube diameter, D. Three different rib thicknesses were considered for numerical analyses. Uniform heat flux was applied to the external surface of the tube and air was selected as working fluid. Numerical calculations were performed with FLUENT 6.1.22 code, in the range of Reynolds number 8000–36000. The results obtained from a smooth tube and rib inserted tube were compared with those from the experimental studies in literature in order to validate the numerical method. The variation of Nusselt number, friction factor and overall enhancement ratios for the tube with triangular cross sectioned ribs were presented. Consequently, a maximum gain of 1.34 on overall enhancement ratio is obtained for S/D = 0.75.


2013 ◽  
Vol 455 ◽  
pp. 470-473
Author(s):  
Chao Wang ◽  
Shang Long Xu ◽  
Yun Chuan Wu

A study has been conducted on the heat transfer of various oscillatory frequencies of pulsation flow through a porous channel network subjected to a constant wall heat flux. The surface temperature distributions, pressure drop, unit thermal resistance and local Nusselt number for different oscillatory frequencies were mainly investigated.


Sign in / Sign up

Export Citation Format

Share Document