Nonlinear wave surface elevation around a multi-column offshore structure

2021 ◽  
Vol 238 ◽  
pp. 109757
Author(s):  
Xiudi Ren ◽  
Longbin Tao ◽  
Yibo Liang ◽  
Duanfeng Han
Author(s):  
Xiudi Ren ◽  
Yibo Liang ◽  
Longbin Tao

Abstract Along with the development in offshore technology, the offshore platforms are gradually becoming larger and more complex. Recent development of oil and gas field in the deepwater region often involves multiple floating platforms adjacent to each other. Wave free surface associated with the air-gap design is one of the most important issues as the interaction between the platforms can complicate the hydrodynamics further. In this paper, the nonlinearity of incident wave and scattered wave are considered in diffraction analysis based on the potential theory. In addition, the nonlinear incident wave is considered to capture the nonlinear features of free surface due to wave diffraction and radiation. The wave surface amplitude around a multi-body platforms system is numerically analyzed in the frequency domain and compared with the numerical results of a single platform. The distribution of wave surface amplitude with different scatter parameter at different wave steepness is investigated to examine the relationship between the two parameters critical to the nonlinear wave surface elevation.


2006 ◽  
Vol 24 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Hou Yijun ◽  
Song Guiting ◽  
Zhao Xixi ◽  
Song Jinbao ◽  
Zheng Quan'an

Author(s):  
Thomas B. Johannessen

Abstract The present paper is concerned with the accurate prediction of nonlinear wave kinematics underneath measured time histories of surface elevation. It is desired to develop a method which is useful in analysis of offshore measurements close to wind turbine foundations. The method should therefore be robust in relatively shallow water and should be able to account for the presence of the foundation and the shortcrestedness of offshore seastates. The present method employs measurements of surface elevation time histories at one or a small number of locations and solves the associated velocity potential by minimizing the error in the free surface boundary conditions. The velocity potential satisfies exactly Laplace’s equation, the bed boundary condition and (optionally) the boundary condition on the wall of a uniform surface piercing column. This is achieved by associating one wavenumber with every wave frequency thereby sacrificing the possibility of following the nonlinear wave evolution but ensuring a good description of the wave properties locally. For shortcrested waves, the direction of wave component propagation is drawn from a known or assumed directional spectrum. No attempt is made to calculate the directional distribution of the wave field from the surface elevation measurements since this is usually not realistically possible with the available data. The method is set up for analysis with or without a uniform current, for shortcrested or longcrested waves and with or without a surface piercing column in the wave field. It has been compared with laboratory data for steep longcrested and shortcrested waves. The method is shown to be in good agreement with measurements. Since the method is based on a Fourier series of surface elevation, however, it cannot model overtopping breaking waves and associated wave impact loading. For problems where wave breaking is important, the method may serve as a screening analysis used to select wave events for detailed analysis using Computational Fluid Dynamics (CFD).


2013 ◽  
Vol 7 (1) ◽  
pp. 273-281 ◽  
Author(s):  
N.I. Mohd Zaki ◽  
M.K. Abu Husain ◽  
G. Najafian

Linear random wave theory (LRWT) has successfully explained most properties of real sea waves with the ex-ception of some nonlinear effects for surface elevation and water particle kinematics. Due to its simplicity, it is frequently used to simulate water particle kinematics at different nodes of an offshore structure from a reference surface elevation record; however, predicted water particle kinematics from LRWT suffer from unrealistically large high-frequency compo-nents in the vicinity of mean water level (MWL). To overcome this deficiency, a common industry practice for evaluation of wave kinematics in the free surface zone consists of using linear random wave theory in conjunction with empirical techniques (such as Wheeler and vertical stretching methods) to provide a more realistic representation of near-surface wave kinematics. It is well known that the predicted kinematics from these methods are different; however, no systematic study has been conducted to investigate the effect of this on the magnitude of extreme responses of an offshore structure. In this paper, probability distributions of extreme responses of an offshore structure from Wheeler and vertical stretching methods are compared. It is shown that the difference is significant; consequently, further research is required to deter-mine which method is more reliable.


Author(s):  
Zhili Zou ◽  
Yalong Zhou ◽  
Kai Yan

A laboratory experiment on generation and evolution of L2-type crescent waves was performed with focus on the effects of finite water depth on crescent waves. The new results include the critical wave steepness for triggering crescent waves, the characteristics of the wave surface pattern and amplitude spectrum, and the parameters of surface elevation.


Author(s):  
Antonio Pegalajar-Jurado ◽  
Michael Borg ◽  
Amy Robertson ◽  
Jason Jonkman ◽  
Henrik Bredmose

In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.


1998 ◽  
Vol 26 (5) ◽  
pp. 401-430 ◽  
Author(s):  
J.M Niedzwecki ◽  
J.W van de Lindt ◽  
E.W Sandt

Sign in / Sign up

Export Citation Format

Share Document