scholarly journals Development of intertidal flats in the Dutch Wadden Sea in response to a rising sea level: Spatial differentiation and sensitivity to the rate of sea level rise

2022 ◽  
Vol 216 ◽  
pp. 105969
Author(s):  
Ymkje Huismans ◽  
Ad van der Spek ◽  
Quirijn Lodder ◽  
Robert Zijlstra ◽  
Edwin Elias ◽  
...  
2018 ◽  
Vol 97 (3) ◽  
pp. 71-78 ◽  
Author(s):  
Ad J.F. van der Spek

AbstractClimate change is very likely to cause a global acceleration in sea-level rise (SLR). The projected acceleration of SLR will also affect the Wadden Sea. In addition to an accelerated SLR, gas and salt extraction will cause subsidence that adds to an increase in water depth in the tidal basins. This will have consequences for the sediment budget of the Wadden Sea and especially for the intertidal flats that have a high ecological value. This synthesis presents projections of the future state of the Dutch Wadden Sea for the years 2030, 2050 and 2100.The projected changes in mean sea level by 2100 for Den Helder and Delfzijl are above the global mean projections, mainly due to the above-average ocean dynamics and glacio-isostatic adjustment contributions in the regional projections. The projected rise in mean sea level for 2100 with relation to 2018 in these locations is 0.41m, 0.52m and 0.76m for, respectively, the RCP2.6, RCP 4.5 and RCP8.5 climate scenarios.When we combine the presented SLR scenarios with the subsidence estimates and compare these rates to the critical rates for ‘drowning’ of intertidal flats that were calculated for the individual tidal basins, we can determine the moment that the maximum imported sediment volume can no longer compensate the increase in accommodation space in a basin and the intertidal flats will start to diminish in surface area and/or height. In the RCP2.6 scenario, the projected rates of relative SLR will be below the critical rate for drowning of the inlet systems in the Dutch Wadden Sea. For the RCP4.5 scenario, the critical SLR rate will be exceeded for Vlie Inlet in 2030, and for the RCP8.5 scenario the critical SLR rate will be exceeded for Vlie Inlet in 2030, Texel Inlet in 2050 and Ameland Inlet in 2100. For the other basins the critical rate will not be exceeded until 2100 or later.The way the intertidal flats in a basin will react to ‘drowning’ is not clear beforehand. It is highly possible that erosion of flats in one place will produce the sediment to maintain flats in other places. Tidal flats close to the sediment-delivering tidal inlet are not likely to disappear, because there the balance between supply and erosion is not likely to change.


2021 ◽  
Vol 8 ◽  
Author(s):  
Christian Jordan ◽  
Jan Visscher ◽  
Torsten Schlurmann

This study explores the projected responses of tidal dynamics in the North Sea induced by the interplay between plausible projections of sea-level rise (SLR) and morphological changes in the Wadden Sea. This is done in order to gain insight into the casual relationships between physical drivers and hydro-morphodynamic processes. To achieve this goal, a hydronumerical model of the northwest European shelf seas (NWES) was set-up and validated. By implementing a plausible set of projections for global SLR (SLRRCP8.5 of 0.8 m and SLRhigh−end of 2.0 m) by the end of this century and beyond, the model was run to assess the responses of the regional tidal dynamics. In addition, for each considered SLR, various projections for cumulative rates of vertical accretion were applied to the intertidal flats in the Wadden Sea (ranging from 0 to 100% of projected SLR). Independent of the rate of vertical accretion, the spatial pattern of M2 amplitude changes remains relatively stable throughout most of the model domain for a SLR of 0.8 m. However, the model shows a substantial sensitivity toward the different rates of vertical accretion along the coasts of the Wadden Sea, but also in remote regions like the Skagerrak. If no vertical accretion is assumed in the intertidal flats of the Wadden Sea, the German Bight and the Danish west coast are subject to decreases in M2 amplitudes. In contrast, those regions experience increases in M2 amplitudes if the local intertidal flats are able to keep up with the projected SLR of 0.8 m. Between the different scenarios, the North Frisian Wadden Sea shows the largest differences in M2 amplitudes, locally varying by up to 14 cm. For a SLR of 2.0 m, the M2 amplitude changes are even more amplified. Again, the differences between the various rates of vertical accretion are largest in the North Frisian Wadden Sea (> 20 cm). The local distortion of the tidal wave is also significantly different between the scenarios. In the case of no vertical accretion, tidal asymmetry in the German estuaries increases, leading to a potentially enhanced sediment import. The presented results have strong implications for local coastal protection strategies and navigation in adjacent estuaries.


2007 ◽  
Vol 44 (10) ◽  
pp. 1453-1465 ◽  
Author(s):  
Julia F Daly ◽  
Daniel F Belknap ◽  
Joseph T Kelley ◽  
Trevor Bell

Differential sea-level change in formerly glaciated areas is predicted owing to variability in extent and timing of glacial coverage. Newfoundland is situated close to the margin of the former Laurentide ice sheet, and the orientation of the shoreline affords the opportunity to investigate variable rates and magnitudes of sea-level change. Analysis of salt-marsh records at four sites around the island yields late Holocene sea-level trends. These trends indicate differential sea-level change in recent millennia. A north–south geographic trend reflects submergence in the south, very slow sea-level rise in the northeast, and a recent transition from falling to rising sea-level at the base of the Northern Peninsula. This variability is best explained as a continued isostatic response to deglaciation.


2018 ◽  
Vol 97 (3) ◽  
pp. 79-127 ◽  
Author(s):  
Bert L.A. Vermeersen ◽  
Aimée B.A. Slangen ◽  
Theo Gerkema ◽  
Fedor Baart ◽  
Kim M. Cohen ◽  
...  

AbstractRising sea levels due to climate change can have severe consequences for coastal populations and ecosystems all around the world. Understanding and projecting sea-level rise is especially important for low-lying countries such as the Netherlands. It is of specific interest for vulnerable ecological and morphodynamic regions, such as the Wadden Sea UNESCO World Heritage region.Here we provide an overview of sea-level projections for the 21st century for the Wadden Sea region and a condensed review of the scientific data, understanding and uncertainties underpinning the projections. The sea-level projections are formulated in the framework of the geological history of the Wadden Sea region and are based on the regional sea-level projections published in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). These IPCC AR5 projections are compared against updates derived from more recent literature and evaluated for the Wadden Sea region. The projections are further put into perspective by including interannual variability based on long-term tide-gauge records from observing stations at Den Helder and Delfzijl.We consider three climate scenarios, following the Representative Concentration Pathways (RCPs), as defined in IPCC AR5: the RCP2.6 scenario assumes that greenhouse gas (GHG) emissions decline after 2020; the RCP4.5 scenario assumes that GHG emissions peak at 2040 and decline thereafter; and the RCP8.5 scenario represents a continued rise of GHG emissions throughout the 21st century. For RCP8.5, we also evaluate several scenarios from recent literature where the mass loss in Antarctica accelerates at rates exceeding those presented in IPCC AR5.For the Dutch Wadden Sea, the IPCC AR5-based projected sea-level rise is 0.07±0.06m for the RCP4.5 scenario for the period 2018–30 (uncertainties representing 5–95%), with the RCP2.6 and RCP8.5 scenarios projecting 0.01m less and more, respectively. The projected rates of sea-level change in 2030 range between 2.6mma−1for the 5th percentile of the RCP2.6 scenario to 9.1mma−1for the 95th percentile of the RCP8.5 scenario. For the period 2018–50, the differences between the scenarios increase, with projected changes of 0.16±0.12m for RCP2.6, 0.19±0.11m for RCP4.5 and 0.23±0.12m for RCP8.5. The accompanying rates of change range between 2.3 and 12.4mma−1in 2050. The differences between the scenarios amplify for the 2018–2100 period, with projected total changes of 0.41±0.25m for RCP2.6, 0.52±0.27m for RCP4.5 and 0.76±0.36m for RCP8.5. The projections for the RCP8.5 scenario are larger than the high-end projections presented in the 2008 Delta Commission Report (0.74m for 1990–2100) when the differences in time period are considered. The sea-level change rates range from 2.2 to 18.3mma−1for the year 2100.We also assess the effect of accelerated ice mass loss on the sea-level projections under the RCP8.5 scenario, as recent literature suggests that there may be a larger contribution from Antarctica than presented in IPCC AR5 (potentially exceeding 1m in 2100). Changes in episodic extreme events, such as storm surges, and periodic (tidal) contributions on (sub-)daily timescales, have not been included in these sea-level projections. However, the potential impacts of these processes on sea-level change rates have been assessed in the report.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2198 ◽  
Author(s):  
Lodder ◽  
Wang ◽  
Elias ◽  
van der Spek ◽  
de Looff ◽  
...  

Climate change, and especially the associated acceleration of sea-level rise, forms a serious threat to the Wadden Sea. The Wadden Sea contains the world’s largest coherent intertidal flat area and it is known that these flats can drown when the rate of sea-level rise exceeds a critical limit. As a result, the intertidal flats would then be permanently inundated, seriously affecting the ecological functioning of the system. The determination of this critical limit and the modelling of the transient process of how a tidal basin responds to accelerated sea-level rise is of critical importance. In this contribution we revisit the modelling of the response of the Wadden Sea tidal basins to sea-level rise using a basin scale morphological model (aggregated scale morphological interaction between tidal basin and adjacent coast, ASMITA). Analysis using this aggregated scale model shows that the critical rate of sea-level rise is not merely influenced by the morphological equilibrium and the morphological time scale, but also depends on the grain size distribution of sediment in the tidal inlet system. As sea-level rises, there is a lag in the morphological response, which means that the basin will be deeper than the systems morphological equilibrium. However, so long as the rate of sea-level rise is constant and below a critical limit, this offset becomes constant and a dynamic equilibrium is established. This equilibrium deviation as well as the time needed to achieve the dynamic equilibrium increase non-linearly with increasing rates of sea-level rise. As a result, the response of a tidal basin to relatively fast sea-level rise is similar, no matter if the sea-level rise rate is just below, equal or above the critical limit. A tidal basin will experience a long process of ‘drowning’ when sea-level rise rate exceeds about 80% of the critical limit. The insights from the present study can be used to improve morphodynamic modelling of tidal basin response to accelerating sea-level rise and are useful for sustainable management of tidal inlet systems.


2020 ◽  
Vol 70 (8) ◽  
pp. 1033-1052 ◽  
Author(s):  
Benno Wachler ◽  
Rita Seiffert ◽  
Caroline Rasquin ◽  
Frank Kösters

2017 ◽  
Vol 68 (1) ◽  
pp. 131-151 ◽  
Author(s):  
Johannes Becherer ◽  
Jacobus Hofstede ◽  
Ulf Gräwe ◽  
Kaveh Purkiani ◽  
Elisabeth Schulz ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document