scholarly journals The miR-93-3p/ZFP36L1/ZFX axis regulates keratinocyte proliferation and migration during skin wound healing

Author(s):  
Xiao Feng ◽  
Shuangbai Zhou ◽  
Weilin Cai ◽  
Jincai Guo
2015 ◽  
Vol 135 (6) ◽  
pp. 1676-1685 ◽  
Author(s):  
Dongqing Li ◽  
X.I. Li ◽  
Aoxue Wang ◽  
Florian Meisgen ◽  
Andor Pivarcsi ◽  
...  

2021 ◽  
Vol 19 (12) ◽  
pp. 2553-2557
Author(s):  
Keyu Yuan ◽  
Yi Sun ◽  
Yu Ji

Purpose: To determine the effect of miR-485-5p on keratinocyte proliferation and migration.Methods: Human primary keratinocytes (HaCaT cells) were treated with different concentrations of transforming growth factor-β1 (TGF)-β1. miR-485-5p expression levels were determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). MTT (3-[4,5-dimethylthiazol-2- yl]-2,5 diphenyl tetrazolium bromide) and wound healing assays were performed to investigate the regulatory effects of miR-485-5p on cell viability and migration of HaCaT cells. Downstream target gene expression of miR-485-5p was determined using a luciferase activity assay.Results: In HaCaT cells, miR-485-5p was time- and dose-dependently downregulated by TGF-β1 treatment (p < 0.05). Forced expression of miR-485-5p decreased cell viability and migration of HaCaT cells (p < 0.05). Knockdown of miR-485-5p enhanced HaCaT cell viability and migration. Integrin subunit alpha-5 (ITGA5) was predicted and verified to be a downstream target of miR-485-5p in HaCaT cells. Overexpression of ITGA5 attenuated the miR-485-5p-induced decrease of HaCaT cell viability and migration (p < 0.05).Conclusion: MiR-485-5p reduces cell proliferation and migration of keratinocytes through the regulation of ITGA5. This mechanism provides a potential therapeutic strategy for skin wound healing. Keywords: ITGA5, Keratinocyte, Cell migration, MiR-485-5p, Cell proliferation, Wound healing


2021 ◽  
Vol 9 ◽  
Author(s):  
Zengjun Yang ◽  
Xiaohong Hu ◽  
Lina Zhou ◽  
Yaxiong He ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Epidermal stem cells (EpSCs) that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis. Little is known about the effects of photochemical activation on EpSC differentiation, proliferation and migration during wound healing. The present study aimed to determine the effects of photodynamic therapy (PDT) on wound healing in vivo and in vitro. Methods We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid (ALA) for PDT to the wound beds. Wound healing was analysed by gross evaluation and haematoxylin–eosin staining in vivo. In cultured EpSCs, protein expression was measured using flow cytometry and immunohistochemistry. Cell migration was examined using a scratch model; apoptosis and differentiation were measured using flow cytometry. Results PDT accelerated wound closure by enhancing EpSC differentiation, proliferation and migration, thereby promoting re-epithelialization and angiogenesis. PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines, whereas the secretion of growth factors was greater than in other groups. The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups. EpSC migration was markedly enhanced after ALA-induced PDT. Conclusions Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization, promoting angiogenesis as well as modulating skin homeostasis. This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing.


2001 ◽  
Vol 154 (4) ◽  
pp. 799-814 ◽  
Author(s):  
Liliane Michalik ◽  
Béatrice Desvergne ◽  
Nguan Soon Tan ◽  
Sharmila Basu-Modak ◽  
Pascal Escher ◽  
...  

We show here that the α, β, and γ isotypes of peroxisome proliferator–activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARα and β expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARα, β, and γ mutant mice, we demonstrate that PPARα and β are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARα is mainly involved in the early inflammation phase of the healing, whereas PPARβ is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARβ mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARα and β in adult mouse epidermal repair.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


2021 ◽  
Vol 11 (19) ◽  
pp. 9343
Author(s):  
Ly Thi Huong Nguyen ◽  
Sang-Hyun Ahn ◽  
Min-Jin Choi ◽  
In-Jun Yang ◽  
Heung-Mook Shin

The delayed and impaired wound healing caused by dexamethasone (DEX) is commonly reported. Puerarin, the major isoflavone found in Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep promoted the wound healing process in diabetic rats. However, the effects and underlying mechanisms of puerarin on DEX-impaired wound healing have not been investigated. This study examined the potential uses of puerarin in upregulating keratinocyte proliferation and migration in dexamethasone (DEX)-suppressed wound healing model. The effects of puerarin on wound healing in vivo were investigated by taking full-thickness 5 mm punch biopsies from the dorsal skin of BALB/c mice and then treating them topically with 0.1% DEX. For the in vitro study, DEX-treated HaCaT cells were used to examine the effects of puerarin on DEX-induced keratinocyte proliferation and migration and the mechanisms of its action. Puerarin, when applied topically, accelerated the wound closure rate, increased the density of the capillaries, and upregulated the level of collagen fibers and TGF-β in the wound sites compared to the DEX-treated mice. Puerarin promoted the proliferation and migration of keratinocytes by activating the ERK and Akt signaling pathways in DEX-treated HaCaT cells. In conclusion, puerarin could be effective in reversing delayed and disrupted wound healing associated with DEX treatments.


Sign in / Sign up

Export Citation Format

Share Document