scholarly journals hsa_circ_0001018 promotes papillary thyroid cancer by facilitating cell survival, invasion, G1/S cell cycle progression, and repressing cell apoptosis via crosstalk with miR-338-3p and SOX4

2022 ◽  
Vol 27 ◽  
pp. 593-597
Author(s):  
Qiang Luo ◽  
Feng Guo ◽  
Qingfeng Fu ◽  
Guoqing Sui
2011 ◽  
Vol 18 (6) ◽  
pp. 731-742 ◽  
Author(s):  
Lisa Zhang ◽  
Reza Rahbari ◽  
Mei He ◽  
Electron Kebebew

Cancer gender disparities have been observed for a variety of human malignancies. Thyroid cancer is one such example where there is a dramatic difference in the incidence, aggressiveness, and death rate by gender. The molecular basis for gender disparity is poorly understood. To address this, we performed genome-wide gene expression profiling in matched papillary thyroid cancer (PTC) samples and identified nine candidate genes differentially expressed by gender. One of these genes was CDC23 that was upregulated in PTC in men compared with women. Because the function and expression of CDC23 is unknown in eukaryotic cells, we further characterized the expression of CDC23 in normal, hyperplastic, and PTC tissue samples. We found CDC23 was overexpressed in PTC and absent in normal and hyperplastic thyroid tissue. In thyroid cancer cells, functional knockdown of CDC23 resulted in an increase in the number of cells in both the S and G2M phases of the cell cycle, and an inhibition of cellular proliferation, tumor spheroid formation, and anchorage-independent growth. Cellular arrest in both S and G2M phases was associated with significant cyclin B1 and securin protein accumulation after CDC23 knockdown. Moreover, the effect of CDC23 on cellular proliferation and cell cycle progression was reversed on triple knockdown studies of CDC23, cyclin B1, and securin. Our data taken together suggests CDC23 has important biologic effects on cell proliferation and cell cycle progression. The effect of CDC23 on cellular proliferation and cell cycle progression is mediated, at least in part, by cyclin B1 and securin protein levels. Therefore, we propose that CDC23 is a critical regulator of cell cycle and cell growth, and may be involved in thyroid cancer initiation and progression, and may explain the different tumor biology observed by gender.


2019 ◽  
Vol 19 (7) ◽  
pp. 561-570 ◽  
Author(s):  
Hamidreza Maroof ◽  
Soussan Irani ◽  
Armin Arianna ◽  
Jelena Vider ◽  
Vinod Gopalan ◽  
...  

Background: The clinical pathological features, as well as the cellular mechanisms of miR-195, have not been investigated in thyroid carcinoma. Objective: The aim of this study is to identify the interactions of vascular endothelial growth factor (VEGF), p53 and miR-195 in thyroid carcinoma. The clinical and pathological features of miR-195 were also investigated. Methods: The expression levels of miR-195 were identified in 123 primary thyroid carcinomas, 40 lymph nodes with metastatic papillary thyroid carcinomas and seven non-neoplastic thyroid tissues (controls) as well as two thyroid carcinoma cell lines, B-CPAP (from metastasizing human papillary thyroid carcinoma) and MB-1 (from anaplastic thyroid carcinoma), by the real-time polymerase chain reaction. Using Western blot and immunofluorescence, the effects of exogenous miR-195 on VEGF-A and p53 protein expression levels were examined. Then, cell cycle and apoptosis assays were performed to evaluate the roles of miR-195 in cell cycle progression and apoptosis. Results: The expression of miR-195 was downregulated in majority of the papillary thyroid carcinoma tissue as well as in cells. Introduction of exogenous miR-195 resulted in downregulation of VEGF-A and upregulation of p53 protein expressions. Upregulation of miR-195 in thyroid carcinoma cells resulted in cell cycle arrest. Moreover, we demonstrated that miR-195 inhibits cell cycle progression by induction of apoptosis in the thyroid carcinoma cells. Conclusion: Our findings showed for the first time that miR-195 acts as a tumour suppressor and regulates cell cycle progression and apoptosis by targeting VEGF-A and p53 in thyroid carcinoma. The current study exhibited that miR-195 might represent a potential therapeutic target for patients with thyroid carcinomas having aggressive clinical behaviour.


2013 ◽  
Vol 333 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lu Dai ◽  
Yuqing Liu ◽  
Junyang Liu ◽  
Xiaoming Wen ◽  
ZhengShuang Xu ◽  
...  

2020 ◽  
Vol 11 (16) ◽  
pp. 4662-4670
Author(s):  
Miao Zhang ◽  
Saifei He ◽  
Xing Ma ◽  
Ying Ye ◽  
Guoyu Wang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hongyan Chen ◽  
Qing Miao ◽  
Miao Geng ◽  
Jing Liu ◽  
Yazhuo Hu ◽  
...  

Aims. To further investigate the antineuroblastoma effect of rutin which is a type of flavonoid.Methods. The antiproliferation of rutin in human neuroblastoma cells LAN-5 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chemotaxis of LAN-5 cells was assessed using transwell migration chambers and scratch wound migration assay. The cell cycle arrest and apoptosis in a dose-dependent manner was measured by flow cytometric and fluorescent microscopy analyses. The apoptosis-related proteins BAX and BCL2 as well as MYCN mRNA express were determined by RT-PCR analysis. Secreted TNF-αlevel were determined using specific enzyme-linked immunosorbent assay kits.Results. Rutin significantly inhibited the growth of LAN-5 cells and chemotactic ability. Flow cytometric analysis revealed that rutin induced G2/M arrest in the cell cycle progression and induced cell apoptosis. The RT-PCR showed that rutin could decrease BCL2 expression and BCL2/BAX ratio. In the meantime, the MYCN mRNA level and the secretion of TNF-αwere inhibited.Conclusion. These results suggest that rutin produces obvious antineuroblastoma effects via induced G2/M arrest in the cell cycle progression and induced cell apoptosis as well as regulating the expression of gene related to apoptosis and so on. It supports the viability of developing rutin as a novel therapeutic prodrug for neuroblastoma treatment, as well as providing a new path on anticancer effect of Chinese traditional drug.


Cancer Cell ◽  
2009 ◽  
Vol 15 (2) ◽  
pp. 91-102 ◽  
Author(s):  
Julia Bollrath ◽  
Toby J. Phesse ◽  
Vivian A. von Burstin ◽  
Tracy Putoczki ◽  
Moritz Bennecke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document