RADIATION-INDUCED CHANGES OF ADC VALUES FOR HEAD AND NECK ORGANS

2017 ◽  
Vol 124 (1) ◽  
pp. e27-e28
Author(s):  
H. SHIMAMOTO ◽  
I. SUMIDA ◽  
M. MAJIMA ◽  
Y. SENDA ◽  
A. USAMI ◽  
...  
2003 ◽  
Vol 14 (3) ◽  
pp. 199-212 ◽  
Author(s):  
A. Vissink ◽  
J. Jansma ◽  
F.K.L. Spijkervet ◽  
F.R. Burlage ◽  
R.P. Coppes

In addition to anti-tumor effects, ionizing radiation causes damage in normal tissues located in the radiation portals. Oral complications of radiotherapy in the head and neck region are the result of the deleterious effects of radiation on, e.g., salivary glands, oral mucosa, bone, dentition, masticatory musculature, and temporomandibular joints. The clinical consequences of radiotherapy include mucositis, hyposalivation, taste loss, osteoradionecrosis, radiation caries, and trismus. Mucositis and taste loss are reversible consequences that usually subside early post-irradiation, while hyposalivation is normally irreversible. Furthermore, the risk of developing radiation caries and osteoradionecrosis is a life-long threat. All these consequences form a heavy burden for the patients and have a tremendous impact on their quality of life during and after radiotherapy. In this review, the radiation-induced changes in healthy oral tissues and the resulting clinical consequences are discussed.


2014 ◽  
Vol 15 (4) ◽  
pp. 6609-6624 ◽  
Author(s):  
Karol Jelonek ◽  
Monika Pietrowska ◽  
Malgorzata Ros ◽  
Adam Zagdanski ◽  
Agnieszka Suchwalko ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6310
Author(s):  
Łukasz Boguszewicz ◽  
Agata Bieleń ◽  
Mateusz Ciszek ◽  
Jacek Wendykier ◽  
Krzysztof Szczepanik ◽  
...  

In the present study, we analyze the nuclear magnetic resonance (NMR) blood serum metabolic profiles of 106 head and neck squamous cell carcinoma (HNSCC) patients during radio (RT) and concurrent radio-chemotherapy (CHRT). Four different fractionation schemes were compared. The blood samples were collected weekly, from the day before the treatment until the last week of CHRT/RT. The NMR spectra were acquired on A Bruker 400 MHz spectrometer at 310 K and analyzed using multivariate methods. Seven metabolites were found significantly to be altered solely by radiotherapy: N-acetyl-glycoprotein (NAG), N-acetylcysteine, glycerol, glycolate and the lipids at 0.9, 1.3 and 3.2 ppm. The NMR results were correlated with the tissue volumes receiving a particular dose of radiation. The influence of the irradiated volume on the metabolic profile is weak and mainly limited to sparse correlations with the inflammatory markers, creatinine and the lymphocyte count in RT and the branched-chain amino-acids in CHRT. This is probably due to the optimal planning and delivery of radiotherapy improving sparing of the surrounding normal tissues and minimizing the differences between the patients (caused by the tumor location and size).


Radiographics ◽  
1996 ◽  
Vol 16 (5) ◽  
pp. 1055-1072 ◽  
Author(s):  
B M Rabin ◽  
J R Meyer ◽  
J W Berlin ◽  
M H Marymount ◽  
P S Palka ◽  
...  

2003 ◽  
Vol 14 (3) ◽  
pp. 213-225 ◽  
Author(s):  
A. Vissink ◽  
F.R. Burlage ◽  
F.K.L. Spijkervet ◽  
J. Jansma ◽  
R.P. Coppes

The location of the primary tumor or lymph node metastases dictates the inclusion of the oral cavity, salivary glands, and jaws in the radiation treatment portals for patients who have head and neck cancer. The clinical sequelae of the radiation treatment include mucositis, hyposalivation, loss of taste, osteoradionecrosis, radiation caries, and trismus. These sequelae may be dose-limiting and have a tremendous effect on the patient’s quality of life. Most treatment protocols to prevent these sequelae are still based on clinical experience, but alternatives based on fundamental basic and clinical research are becoming more and more available. Many of these alternatives either need further study before they can be incorporated into the protocols commonly used to prevent and treat the radiation-related oral sequelae or await implementation of these protocols. In this review, the various possibilities for prevention and/or treatment of radiation-induced changes in healthy oral tissues and their consequences are discussed.


2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Author(s):  
Rania Sobhy Abou khadrah ◽  
Haytham Haroon Imam

Abstract Background Differentiation between malignant and benign masses is essential for treatment planning and helps in improving the prognosis of malignant tumors; the aim of this work is to determine the role of diffusion-weighted magnetic resonance imaging (DW-MRI) and the apparent diffusion coefficient (ADC) in the differentiation between benign and malignant solid head and neck masses by comparing diagnostic performance of low b values (0.50 and 400 s/mm2) versus high b values (800 and 1000 s/mm2) and comparing the result with histopathological finding. Results The study included 60 patients (34 male and 26 female) with solid head and neck masses > 1 cm who referred to radiodiagnosis department for MRI evaluation. Multiple b values were used 50, 400, 800, and 1000 s/mm2 (at least 2 b values). DWI and ADC value of all 60 patients were acquired. Mean ADC values of both malignant and benign masses were statistically measured and compared, and cut off value was determined. Solid head and neck masses in our study DWI with the use of high b value 800 and 1000 s/mm2 were of higher significance (P value 0.001*). There was a significant difference in the mean ADC value between benign and malignant masses (P < 0.01); solid masses were divided into 2 categories: (a) malignant lesions 46.7% (n = 28) with mean ADC value (0.82 ± 0.19) × 10−3 s/mm2 and (b) benign lesions 53.3% (n = 32) with mean ADC value (2.05 ± 0.46) × 10−3 s/mm2) with ADC cutoff value of 1.0 × 10−3 s/mm2 and 94% sensitivity, 93% specificity, negative predictive value (NPV) = 94%, positive predictive value (PPV) 93%, and an accuracy of 93.5%. Conclusion The DWI with ADC mapping were valuable as non-invasive tools in differentiating between benign and malignant solid head and neck masses. The use of high b value 800 and 1000 s/mm2 was of higher significance (P value 0.001*) in differentiation between benign and malignant lesion than that with low b values 0, 50, and 400 s/mm2 (0.01). The mean ADC values were significantly lower in malignant solid masses. Attention had to be paid to the choice of b values in MRI-DWI in the head and neck region.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Tine N. Christensen ◽  
Seppo W. Langer ◽  
Gitte Persson ◽  
Klaus Richter Larsen ◽  
Annemarie G. Amtoft ◽  
...  

Radiation-induced changes may cause a non-malignant high 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-uptake. The 3′-deoxy-3′-[18F]fluorothymidine (FLT)-PET/CT performs better in the differential diagnosis of inflammatory changes and lung lesions with a higher specificity than FDG-PET/CT. We investigated the association between post-radiotherapy FDG-PET-parameters, FLT-PET-parameters, and outcome. Sixty-one patients suspected for having a relapse after definitive radiotherapy for lung cancer were included. All the patients had FDG-PET/CT and FLT-PET/CT. FDG-PET- and FLT-PET-parameters were collected from within the irradiated high-dose volume (HDV) and from recurrent pulmonary lesions. For associations between PET-parameters and relapse status, respectively, the overall survival was analyzed. Thirty patients had a relapse, of these, 16 patients had a relapse within the HDV. FDG-SUVmax and FLT-SUVmax were higher in relapsed HDVs compared with non-relapsed HDVs (median FDG-SUVmax: 12.8 vs. 4.2; p < 0.001; median FLT-SUVmax 3.9 vs. 2.2; p < 0.001). A relapse within HDV had higher FDG-SUVpeak (median FDG-SUVpeak: 7.1 vs. 3.5; p = 0.014) and was larger (median metabolic tumor volume (MTV50%): 2.5 vs. 0.7; 0.014) than the relapsed lesions outside of HDV. The proliferative tumor volume (PTV50%) was prognostic for the overall survival (hazard ratio: 1.07 pr cm3 [1.01–1.13]; p = 0.014) in the univariate analysis, but not in the multivariate analysis. FDG-SUVmax and FLT-SUVmax may be helpful tools for differentiating the relapse from radiation-induced changes, however, they should not be used definitively for relapse detection.


Sign in / Sign up

Export Citation Format

Share Document