Profile measurement of a one-dimensional phase boundary sample using a single shot phase-step method

2005 ◽  
Vol 43 (12) ◽  
pp. 1305-1314 ◽  
Author(s):  
M. de Angelis ◽  
S. De Nicola ◽  
P. Ferraro ◽  
A. Finizio ◽  
S. Grilli ◽  
...  
2003 ◽  
Vol 14 (08) ◽  
pp. 1087-1105 ◽  
Author(s):  
ZHONGCHENG WANG ◽  
YONGMING DAI

A new twelfth-order four-step formula containing fourth derivatives for the numerical integration of the one-dimensional Schrödinger equation has been developed. It was found that by adding multi-derivative terms, the stability of a linear multi-step method can be improved and the interval of periodicity of this new method is larger than that of the Numerov's method. The numerical test shows that the new method is superior to the previous lower orders in both accuracy and efficiency and it is specially applied to the problem when an increasing accuracy is requested.


1984 ◽  
Vol 6 (4) ◽  
pp. 12-20
Author(s):  
Duong Ngoc Hai

Steady one-dimensional nonstationary flow of boiling liquid from finite or infinit pipe in a consideration of the effect of the phase-boundary heat and mass transfer. The Received system of quasi-linear differential equations has been decided by the modificati on of Lax - wendroff method in IBM. Numerical results are compared as xperimental data.


2021 ◽  
Vol 9 ◽  
Author(s):  
José Ángel Picazo-Bueno ◽  
Javier García ◽  
Vicente Micó

Digital holographic microscopy (DHM) is a well-known microscopy technique using an interferometric architecture for quantitative phase imaging (QPI) and it has been already implemented utilizing a large number of interferometers. Among them, single-element interferometers are of particular interest due to its simplicity, stability, and low cost. Here, we present an extremely simple common-path interferometric layout based on the use of a single one-dimensional diffraction grating for both illuminating the sample in reflection and generating the digital holograms. The technique, named single-element reflective digital holographic microscopy (SER-DHM), enables QPI and topography analysis of reflective/opaque objects using a single-shot operation principle. SER-DHM is experimentally validated involving different reflective samples.


2001 ◽  
Vol 704 ◽  
Author(s):  
Sheng-Ming Shih ◽  
Wei-Fang Su ◽  
Yuh-Jiuan Lin ◽  
Cen-Shawn Wu ◽  
Chii-Dong Chen

AbstractNovel arrays of gold nanoparticles with sulfur containing fullerene nanoparticles were self-assembled through the formation of Au-S covalent bonds. Disulfide functional groups were introduced into C60 molecule by reacting propyl 2-aminoethyl disulfide with C60. The two dimensional(2D) arrays were formed at the interface of aqueous phase of gold particles and organic phase of fullerene particles as a blue transparent film. TEM images showed that the fullerene spacing between adjacent Au(~10 nm) particles was about 2.1±0.4 nm, which was consistent with the result of 2.18 nm by molecular molding calculations(MM+). The arrays were deposited on the top of pairs of gold electrodes to form 2D colloidal single electron devices. The electrode pairs were made by electron beam lithography techniques, and the separation between tips of the two electrodes in a pair was less then 100 nm. Transport measurements at low temperatures exhibited Coulomb-Blockade type current-voltage characteristics, the lower the temperature the more pronounced the Coulomb gap. Also, step-by-step method was used to assemble one-dimensional(1D) array of gold nanoparticles with fullerene derivative between two electrodes spaced with 15 nm. The Coulomb blockade behavior of 1D arrays was clearer than that of 2D arrays.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 719
Author(s):  
Daniel K. Kehoe ◽  
Luis Romeral ◽  
Ross Lundy ◽  
Michael A. Morris ◽  
Michael G. Lyons ◽  
...  

Direct alcohol fuel cells are highly promising as efficient power sources for various mobile and portable applications. However, for the further advancement of fuel cell technology it is necessary to develop new, cost-effective Pt-free electrocatalysts that could provide efficient alcohol oxidation and also resist cross-over poisoning. Here, we report new electrocatalytic materials for ethylene glycol oxidation, which are based on AuAg linear nanostructures. We demonstrate a low temperature tunable synthesis that enables the preparation of one dimensional (1D) AuAg nanostructures ranging from nanowires to a new nano-necklace-like structure. Using a two-step method, we showed that, by aging the initial reaction mixture at various temperatures, we produced ultrathin AuAg nanowires with a diameter of 9.2 ± 2 and 3.8 ± 1.6 nm, respectively. These nanowires exhibited a high catalytic performance for the electro-oxidation of ethylene glycol with remarkable poisoning resistance. These results highlight the benefit of 1D metal alloy-based nanocatalysts for fuel cell applications and are expected to make an important contribution to the further development of fuel cell technology.


2017 ◽  
Vol 8 (1-2) ◽  
pp. 77 ◽  
Author(s):  
Ali Shokri ◽  
Morteza Tahmourasi

A new four-step implicit linear sixth algebraic order method with vanished phase-lag and its first derivative is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schr¨odinger equation and related problems. In order to produce an efficient multistep method the phase-lag property and its derivatives are used. An error analysis and a stability analysis is also investigated and a comparison with other methods is also studied. The efficiency of the new methodology is proved via theoretical analysis and numerical applications.


Sign in / Sign up

Export Citation Format

Share Document