Investigation on thermal damage model of skin tissue in vitro by infrared laser welding

2020 ◽  
Vol 124 ◽  
pp. 105807
Author(s):  
Cong Li ◽  
Jun Huang ◽  
Kehong Wang ◽  
Qimeng Liu ◽  
Zibo Chen
2018 ◽  
Author(s):  
Antonios Keirouz ◽  
Giuseppino Fortunato ◽  
Anthony Callanan ◽  
Norbert Radacsi

Scaffolds and implants used for tissue engineering need to be adapted for their mechanical properties with respect to their environment within the human body. Therefore, a novel composite for skin tissue engineering is presented by use of blends of Poly(vinylpyrrolidone) (PVP) and Poly(glycerol sebacate) (PGS) were fabricated via the needleless electrospinning technique. The formed PGS/PVP blends were morphologically, thermochemically and mechanically characterized. The morphology of the developed fibers related to the concentration of PGS, with high concentrations of PGS merging the fibers together plasticizing the scaffold. The tensile modulus appeared to be affected by the concentration of PGS within the blends, with an apparent decrease in the elastic modulus of the electrospun mats and an exponential increase of the elongation at break. Ultraviolet (UV) crosslinking of PGS/PVP significantly decreased and stabilized the wettability of the formed fiber mats, as indicated by contact angle measurements. In vitro examination showed good viability and proliferation of human dermal fibroblasts over the period of a week. The present findings provide important insights for tuning the elastic properties of electrospun material by incorporating this unique elastomer, as a promising future candidate for skin substitute constructs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fujiao Nie ◽  
Jiazhao Yan ◽  
Yanjun Ling ◽  
Zhengrong Liu ◽  
Chaojun Fu ◽  
...  

Abstract Background Diabetic retinopathy (DR) has become a worldwide concern because of the rising prevalence rate of diabetes mellitus (DM). Despite much energy has been committed to DR research, it remains a difficulty for diabetic patients all over the world. Since apoptosis of retinal microvascular pericytes (RMPs) is the early characteristic of DR, this study aimed to reveal the mechanism of Shuangdan Mingmu (SDMM) capsule, a Chinese patent medicine, on oxidative stress-induced apoptosis of pericytes implicated with poly (ADP-ribose) polymerase (PARP) / glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pathway. Methods Network pharmacology approach was performed to predict biofunction of components of SDMM capsule dissolved in plasma on DR. Both PARP1 and GAPDH were found involved in the hub network of protein-protein interaction (PPI) of potential targets and were found to take part in many bioprocesses, including responding to the regulation of reactive oxygen species (ROS) metabolic process, apoptotic signaling pathway, and response to oxygen levels through enrichment analysis. Therefore, in vitro research was carried out to validate the prediction. Human RMPs cultured with media containing 0.5 mM hydrogen oxide (H2O2) for 4 h was performed as an oxidative-damage model. Different concentrations of SDMM capsule, PARP1 inhibitor, PARP1 activation, and GAPDH inhibitor were used to intervene the oxidative-damage model with N-Acetyl-L-cysteine (NAC) as a contrast. Flow cytometry was performed to determine the apoptosis rate of cells and the expression of ROS. Cell counting kit 8 (CCK8) was used to determine the activity of pericytes. Moreover, nitric oxide (NO) concentration of cells supernatant and expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), B cell lymphoma 2 (BCL2), vascular endothelial growth factor (VEGF), endothelin 1 (ET1), PARP1, and GAPDH were tested through RT-qPCR, western blot (WB), or immunocytochemistry (ICC). Results Overproduction of ROS, high apoptotic rate, and attenuated activity of pericytes were observed after cells were incubated with media containing 0.5 mM H2O2. Moreover, downregulation of SOD, NO, BCL2, and GAPDH, and upregulation of VEGFA, ET1, and PARP1 were discovered after cells were exposed to 0.5 mM H2O2 in this study, which could be improved by PARP1 inhibitor and SDMM capsule in a dose-dependent way, whereas worsened by PARP1 activation and GAPDH inhibitor. Conclusions SDMM capsule may attenuate oxidative stress-induced apoptosis of pericytes through downregulating PARP expression and upregulating GAPDH expression.


Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


2009 ◽  
Vol 25 (4) ◽  
pp. 473-477 ◽  
Author(s):  
C. Fornaini ◽  
C. Bertrand ◽  
J. P. Rocca ◽  
P. Mahler ◽  
M. Bonanini ◽  
...  

2016 ◽  
Vol 136 (9) ◽  
pp. S173 ◽  
Author(s):  
N. Esselin ◽  
C. Capallere ◽  
C. Meyrignac ◽  
C. Plaza ◽  
C. Coquet ◽  
...  

Author(s):  
Ryang D. Lovik ◽  
John P. Abraham ◽  
Eph M. Sparrow

In vitro and cadaver experiments, coupled with numerical simulations, were performed to assess the possibility that orbital atherectomy might cause thermal damage of tissue. The experiments involved debulking operations on a surrogate artery and on the plaque-lined posterior tibial artery of a cadaver. Temperatures and coolant flow rates measured during these experiments enabled a numerical simulation of the debulking of a plaque-lined artery in a living human. The temperature variations from the numerical simulations were used to evaluate a thermal injury index. The resulting values of the index were found to be several orders of magnitude below the threshold value for thermal injury. It is concluded that it is extremely unlikely that the use of an orbital debulking device, the Diamondback 360°™ (Cardiovascular Systems, Inc.), can lead to thermal injury of the artery wall.


2021 ◽  
Author(s):  
Quan Chen ◽  
Hongjian Lu ◽  
Chengwei Duan ◽  
Xiangyang Zhu ◽  
Yi Zhang ◽  
...  

Abstract Neuroinflammation and neuron injury are common features of the central nervous system (CNS) diseases. It is of great significance to identify their shared regulatory mechanisms and explore the potential therapeutic targets. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases, but its expression and biological function during CNS neuroinflammation remain unclear. In the present study, utilizing the lipopolysaccharide (LPS)-induced neuroinflammation model in mice, we reported an elevated expression of PDCD4 both in injured neurons and activated microglia of the inflamed brain. A similar change in PDCD4 expression was observed in vitro in the microglial activation model. Silencing PDCD4 by shRNA significantly inhibited the phosphorylation of MAPKs (p38, ERK, and JNK), prevented the phosphorylation and nuclear translocation of NF-κB p65, and thus attenuated the LPS-induced microglial inflammatory activation. Interestingly, LPS also required the MAPK/NF-κB signaling activation to boost PDCD4 expression in microglia, indicating the presence of a positive loop. Moreover, a persistent elevation of PDCD4 expression was detected in the H2O2-induced neuronal oxidative damage model. Knocking down PDCD4 significantly inhibited the expression of proapoptotic protein BAX, suggesting the proapoptotic activity of PDCD4 in neurons. Taken together, our data indicated that PDCD4 may serve as a hub regulatory molecule that simultaneously promotes the microglial inflammatory activation and the oxidative stress-induced neuronal apoptosis within CNS. The microglial PDCD4–MAPK–NF-κB positive feedback loop may exaggerate the vicious cycle of neuroinflammation and neuronal injury and thus may become a potential therapeutic target for neuroinflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document