Effect of rare earth oxide on microstructure and high temperature oxidation properties of laser cladding coatings on 5CrNiMo die steel substrate

2019 ◽  
Vol 119 ◽  
pp. 105597 ◽  
Author(s):  
M. Zhang ◽  
X.H. Wang ◽  
K.L. Qu ◽  
S.S. Liu
2011 ◽  
Vol 189-193 ◽  
pp. 441-446
Author(s):  
Xiao Xia Tan ◽  
Zong De Liu

NiAl and Ni3Al intermetallic compound claddings are prepared by argon arc cladding technology on the 16Mn steel substrate. These claddings were oxidized for 100 hours at 850 and the oxide quality of each sample was recorded every 10 hours. The results show that the NiAl and Ni3Al claddings have homogeneous structure and few defects, and form excellent metallurgical bonding with the matrix. The oxidation kinetics results show that, the oxidation weight gain rate of NiAl was more stable than Ni3Al and tended to zero earlier. Oxide layer spallation of Ni3Al cladding was more serious than that of NiAl cladding. Thus, NiAl argon arc cladding has the more excellent high temperature oxidation properties than Ni3Al argon arc cladding.


2016 ◽  
Vol 63 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Xiaodong Zhang ◽  
Xiaohua Jie ◽  
Liuyan Zhang ◽  
Song Luo ◽  
Qiongbin Zheng

Purpose This paper aims to discuss that a WC/Co-Cr alloy coating was applied to the surface of H13 steel by laser cladding. Design/methodology/approach The oxidation behavior of the WC/Co-Cr alloy coating at 600°C was investigated by comparing it with the performance of the steel substrate to better understand the thermal stability of H13 steel. Findings The results showed that the WC/Co-Cr alloy coating exhibited better high-temperature oxidation resistance and thermal stability than did uncoated H13 steel. The coated H13 steel had a lower mass gain rate and higher microhardness than did the substrate after different oxidation times. Originality/value The WC/Co-Cr alloy coating was composed of e-Co, CW3, Co6W6C, Cr23C6 and Cr7C3; this mixture offered good thermal stability and better high-temperature oxidation resistance.


2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2018 ◽  
Vol 133 ◽  
pp. 374-385 ◽  
Author(s):  
Muhamad Firdaus ◽  
M. Akbar Rhamdhani ◽  
W. John Rankin ◽  
Mark Pownceby ◽  
Nathan A.S. Webster ◽  
...  

2019 ◽  
Vol 71 (5) ◽  
pp. 706-711 ◽  
Author(s):  
Bingxue Cheng ◽  
Haitao Duan ◽  
Yongliang Jin ◽  
Lei Wei ◽  
Jia Dan ◽  
...  

Purpose This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives. Design/methodology/approach Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed. Findings The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards. Originality/value Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.


Sign in / Sign up

Export Citation Format

Share Document