Sol-gel fabrication of Ag-Coated ZnO quantum dots nanocomposites with excellent photocatalytic activity

2021 ◽  
Vol 118 ◽  
pp. 111235
Author(s):  
Xinli Wang ◽  
Jin Li
2017 ◽  
Vol 41 (4) ◽  
pp. 1723-1735 ◽  
Author(s):  
Lellala Kashinath ◽  
Keerthiraj Namratha ◽  
Shivanna Srikantaswamy ◽  
Ajayan Vinu ◽  
Kullaiah Byrappa

Excellent photocatalytic activity by highly photo-responsive electron transfer from ZnS–RGO, and RGO acts as an electron reservoir and effectively suppresses charge recombination.


2008 ◽  
Vol 30 (8) ◽  
pp. 1233-1239 ◽  
Author(s):  
Debasis Bera ◽  
Lei Qian ◽  
Subir Sabui ◽  
Swadeshmukul Santra ◽  
Paul H. Holloway

Nanoscale ◽  
2017 ◽  
Vol 9 (33) ◽  
pp. 12032-12038 ◽  
Author(s):  
Ge Gao ◽  
Qiaoyue Xi ◽  
Hua Zhou ◽  
Yongxia Zhao ◽  
Cunqi Wu ◽  
...  

Uniform CsPbX3 quantum dots were synthesized via an emulsion fabrication and demulsion method at room temperature. The as-prepared CsPbX3 QDs exhibit high synthetic yield and highly uniform morphology, as well as excellent photocatalytic activity toward the degradation of MO.


2011 ◽  
Vol 364 ◽  
pp. 129-133 ◽  
Author(s):  
Liyana Mohd Lawi Ruhana ◽  
Taqiyuddin Mawardi Ayob Muhammad ◽  
Radiman Shahidan ◽  
Irman Abdul Rahman ◽  
Bohari M. Yamin

CdS/ZnO quantum dots (QDs) were prepared at a temperature of 293 K by the sol-gel method with Triethanolamine (TEA) as a capping agent. The effect of CdS/ZnO mixture ratio of 1:9, 1:1 and 9:1 on the optical absorption and fluorescence spectra were investigated by UV-Vis and Fluorescence spectroscopy. By increasing ZnO composition, a blue-shift of absorption edge and emission spectra were observed. The band gap for 1:9, 1:1 and 9:1 were found to be 4.13, 3.93 and 3.11 eV, respectively. The morphology of the CdS/ZnO QDs for each mixing ratio was obtained by transmission electron microscope (TEM). The size of the QDs was found to be in the range of 5-10 nm with some agglomerated particles.


2016 ◽  
Vol 16 (4) ◽  
pp. 3597-3601
Author(s):  
Fengyi Liu ◽  
Hong Li ◽  
Yajing Hu ◽  
Na Jin ◽  
Yun Mou ◽  
...  

In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol–gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5–6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism.


2016 ◽  
Vol 16 (4) ◽  
pp. 3592-3596 ◽  
Author(s):  
Na Jin ◽  
Hong Li ◽  
Fengyi Liu ◽  
Ya-Hong Xie

In order to increase the exchange efficiency of solar cells by down-conversion, Tb3+ doped ZnO quantum dots (QDs) were successfully synthesized by sol–gel process. The X-ray diffraction (XRD) results indicate that ZnO QDs have hexagonal wurtzite structure. ZnO QDs have a spherical shape and diameter around 5 nm, which was confirmed by high-resolution transmission electron microscopy (HRTEM). The intensity of visible light emission peaks becomes strengthened and then weakened with the increase of Tb3+ doping concentration. When the concentration is more than 1%, because of the decrease of surface defects and concentration quenching effect, the emissive intensity is weakened. The enhancement of the PL emission peaks at 542 nm, 582 nm, and 619 nm was assigned to energy transfer between Tb3+ ions and ZnO QDs host. Moreover, the absorption spectra also demonstrates energy transfers from Tb3+ ions to ZnO QDs.


2019 ◽  
Vol 26 (05) ◽  
pp. 1850196 ◽  
Author(s):  
CHUANSHENG CHEN ◽  
QUN FANG ◽  
SHIYI CAO ◽  
YONGXIANG YAN

In order to consider the performance enhancement and feasibility of practical application, this research work discussed the effects of different ions on the photocatalytic activity of TiO2/Fe2O3 hybrids in detail, involving H[Formula: see text], OH−, NH[Formula: see text], and NO[Formula: see text]. The TiO2/Fe2O3 hybrids were prepared by organic electrolyte-assisted sol–gel method under UV irradiation, and their function mechanisms were analyzed. Experiment results show that the resultant TiO2/Fe2O3 hybrids possess excellent photocatalytic activity and photocatalytic stability for degradation of organics under acid condition (pH 2–8). Notably, the NO[Formula: see text] ions could accelerate degradation of rhodamine B and methyl orange, and the recyclability of TiO2/Fe2O3 hybrids can be greatly enhanced in the co-existence of NO[Formula: see text] and NH[Formula: see text]. Meanwhile, this symbiosis of NO[Formula: see text] and NH[Formula: see text] is proven able to buffer the solution pH in photocatalysis. Furthermore, the prominent photocatalytic activity of TiO2/Fe2O3 hybrids for organic pollutants was mainly attributed to the formation of hydroxyl radicals (OH). The synthetic products show great potential applications in purification of air or wastewater that contains ammonia-nitrogen molecules.


The pure and Mg2+ doped CeO2 quantum dot were synthesized by sol-gel technique. The prepared quantum dots were characterized using X-ray diffraction pattern (XRD), Scanning electron microscope (SEM-EDX). The XRD results show cubic structure of the CeO2 quantum dots. The crystalline size (D), microstrain (ε), dislocation density (δ) and lattice parameter (α) were calculated and analyzed. SEM-EDX analysis shows the morphology and the presence of elements. The photocatalytic activity of the synthesized quantum dot was evaluated based on the photodegradation of methylene blue (MB) by UV-Vis spectrometry.


2021 ◽  
Vol 32 (2) ◽  
pp. 71-85
Author(s):  
Anwar Iqbal ◽  
Usman Saidu ◽  
Farook Adam ◽  
Srimala Sreekantan ◽  
Normawati Jasni ◽  
...  

In this study, a detailed investigation on the effect of zinc oxide (ZnO) quantum dots (QDs) embedment on the physicochemical properties of anatase titanium dioxide (TiO2) was conducted. The highly porous nanocomposite labelled as ZQT was prepared via the sol-gel assisted hydrothermal method. The powder X-ray diffraction (XRD) analysis indicates that the average crystallite size of the ZnO QDs, anatase TiO2 (TiO2 NPs) and ZQT were 4.45 nm, 9.22 nm and 11.38 nm, respectively. Photoluminescent (PL) analysis detected the presence of defects related to TiO2, oxygen vacancies and quantum confinement effect (QCE) of the ZnO QDs in ZQT. These features enhanced the photodegradation of tetracycline (TC) under 48 watt of fluorescent light irradiation when ZQT (98.0%) was used compared to TiO2NPs (32.4%) and ZnO QDs (68.8%). The photodegradation activity was driven by O2●− followed by ●OH and h+.


Sign in / Sign up

Export Citation Format

Share Document