Flexible pressure sensor with high sensitivity and fast response for electronic skin using near-field electrohydrodynamic direct writing

2021 ◽  
Vol 89 ◽  
pp. 106044
Author(s):  
Hangfeng Dong ◽  
Libing Zhang ◽  
Ting Wu ◽  
Haijun Song ◽  
Jiaqing Luo ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (44) ◽  
pp. 26188-26196 ◽  
Author(s):  
Xiaojun Chen ◽  
Xitong Lin ◽  
Deyun Mo ◽  
Xiaoqun Xia ◽  
Manfeng Gong ◽  
...  

Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human–computer interaction, and bionic prosthetics.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Joon Lee ◽  
Srinivas Gandla ◽  
Byeongjae Lim ◽  
Sunju Kang ◽  
Sunyoung Kim ◽  
...  

Abstract Conformal and ultrathin coating of highly conductive PEDOT:PSS on hydrophobic uneven surfaces is essential for resistive-based pressure sensor applications. For this purpose, a water-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution was successfully exchanged to an organic solvent-based PEDOT:PSS solution without any aggregation or reduction in conductivity using the ultrafiltration method. Among various solvents, the ethanol (EtOH) solvent-exchanged PEDOT:PSS solution exhibited a contact angle of 34.67°, which is much lower than the value of 96.94° for the water-based PEDOT:PSS solution. The optimized EtOH-based PEDOT:PSS solution exhibited conformal and uniform coating, with ultrathin nanocoated films obtained on a hydrophobic pyramid polydimethylsiloxane (PDMS) surface. The fabricated pressure sensor showed high performances, such as high sensitivity (−21 kPa−1 in the low pressure regime up to 100 Pa), mechanical stability (over 10,000 cycles without any failure or cracks) and a fast response time (90 ms). Finally, the proposed pressure sensor was successfully demonstrated as a human blood pulse rate sensor and a spatial pressure sensor array for practical applications. The solvent exchange process using ultrafiltration for these applications can be utilized as a universal technique for improving the coating property (wettability) of conducting polymers as well as various other materials.


2019 ◽  
Vol 294 ◽  
pp. 45-53 ◽  
Author(s):  
Shengnan Chang ◽  
Jin Li ◽  
Yin He ◽  
Hao Liu ◽  
Bowen Cheng

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6588
Author(s):  
Jun Ho Lee ◽  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jae Cheol Shin ◽  
Jeong-Wan Jo ◽  
...  

For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa−1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa−1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.


2020 ◽  
Vol 20 (13) ◽  
pp. 7354-7361
Author(s):  
Yaling Wang ◽  
Wei Zhu ◽  
Yuedong Yu ◽  
Pengcheng Zhu ◽  
Qingsong Song ◽  
...  

2019 ◽  
Vol 89 (23-24) ◽  
pp. 5144-5152 ◽  
Author(s):  
Ronghui Wu ◽  
Liyun Ma ◽  
Aniruddha Balkrishna Patil ◽  
Chen Hou ◽  
Zhaohui Meng ◽  
...  

Intelligent textile that endow traditional fabric with functionalities have attracted increasing attention. In this research work, we fabricated a flexible and wearable pressure sensor with conductive nylon fabric as the electrodes and elastomer Ecoflex as the dielectric layer. The conductive nylon fabric in the twill structure, which showed a high conductivity of 0.268 Ω·cm (specific resistance), was prepared by magnetron sputtering with silver films. The flexible pressure sensor shows a high sensitivity of 0.035 kPa−1, a good linear response under pressure from 0 to 16 kPa, and a quick response time of 0.801 s. The fabricated pressure sensor was found to be highly reproducible and repeatable against repeated mechanical loads for 9500 times, with a small capacitance loss rate of 0.0534. The fabric-based flexible and wearable sensor with good properties can be incorporated into a fabric garment by the hot-pressing method without sacrificing comfort, which can then be used for human motion detecting or touch sensing. The smart glove with finger touch function was proved to be efficient in Morse code editing, which has potential for information transfer in the military field.


2015 ◽  
Vol 748 ◽  
pp. 1-4 ◽  
Author(s):  
Li Xin Mo ◽  
Yu Qun Hou ◽  
Qing Bin Zhai ◽  
Wen Guan Zhang ◽  
Lu Hai Li

The novel flexible pressure sensor with skin-like stretchability and sensibility has attracted tremendous attention in academic and industrial world in recent years. And it also has demonstrated great potential in the applications of electronic skin and wearable devices. It is significant and challenging to develop a highly sensitive flexible pressure sensor with a simple, low energy consuming and low cost method. In this paper, the silver nanowires (AgNWs) as electrode material were synthesized by polyol process. The polydimethylsiloxane (PDMS) was chosen as a flexible substrate and polyimide (PI) film as dielectric layer. The AgNWs based electrode was prepared in two methods. One is coating the AgNWs on photographic paper followed by in situ PDMS curing. Another one is suction filtration of the AgNWs suspension followed by glass slide transfer and PDMS curing. Then the capacitive pressure sensor was packaged in a sandwich structure with two face to face electrodes and a PI film in the middle. The sensitivity of the sensor as well as the micro-structure of the electrodes was compared and studied. The results indicate that the roughness of the electrode based on AgNWs/PDMS micro-structure plays an important role in the sensitivity of sensor. The as-prepared flexible pressure sensor demonstrates high sensitivity of 0.65kPa-1. In addition, the fabrication method is simple, low energy consuming and low cost, which has great potential in the detection of pulse, heart rate, sound vibration and other tiny pressure.


Sign in / Sign up

Export Citation Format

Share Document