Skeletal Muscle Regeneration: MSC versus Satellite Cells

2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P86-P86
Author(s):  
Jens Stern-Straeter ◽  
Juritz Stephanie ◽  
Gregor Bran ◽  
Frank Riedel ◽  
Haneen Sadick ◽  
...  

Problem Differentiating stem cells into the myogenic linage in order to create functional muscle tissue is a challenging endeavour. In this work, adipose-derived mesenchymal stem cells (MSC) and satellite cells derived from muscle biopsies were compared regarding proliferation and myogenic differentiation potential under standardized cell culture conditions. This data was obtained in order to discover the most promising type of stem cell for regeneration of muscle tissue and to determine the optimal culture conditions for later clinical use. Methods Human MSC were isolated from adipose tissue, and primary human skeletal myoblasts were extracted from muscle biopsies by enzymatic digestion. Proliferation was analysed using the AlamarBlue® assay. Gene expression of marker genes – such as Myogenin, Myo D, Myf 5 and MHC – were analysed by RT-PCR. Immunostainings against desmin and sarcomeric-actin were performed as differentiation markers. Results MSC cell cultures showed a greater proliferation rate compared with satellite cell cultures. In both stem cell cultures, myogenic differentiation/heritage could be verified by immunostainings against the muscle-specific marker desmin. Gene expression and protein analysis revealed a more stable differentiation of human satellite cell cultures. Conclusion Characterization of both human MSC cultures and satellite cell cultures – and thereby an understanding of myogenesis – might lead to their clinical usage in skeletal muscle tissue engineering. The results in this study appear to indicate that human satellite cell cultures have a more stable differentiation under in vitro conditions and that they might offer a greater potential for skeletal muscle tissue engineering purposes. Significance Our study contributes to the understanding of myogenic differentiation of MSC and satellite cells and helps to improve culture systems for later clinical utilization.

2019 ◽  
Vol 20 (1) ◽  
pp. 24-37 ◽  
Author(s):  
Laura Forcina ◽  
Carmen Miano ◽  
Laura Pelosi ◽  
Antonio Musarò

The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal development and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or regenerative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regulatory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, contributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satellite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satellite cell biology.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Matthew Fincher ◽  
David Abraham ◽  
Daryll Baker ◽  
Janice Tsui

Introduction Treatment options for critical limb ischaemia (CLI) are limited. Recent evidence has suggested that even with successful revascularisation, patients often show little functional improvement. This has been attributed to a musculopathy that occurs in CLI. Myogenic progenitor satellite cells (SCs) provide skeletal muscle with an intrinsic ability to regenerate. It has been shown that there is an increase in SCs in ischaemic muscle, however their function in ischaemia is poorly understood and we hypothesize that ischaemia has a detrimental effect on SC function. Methods Gastrocnemius muscle biopsies were taken from CLI patients and compared with non ischaemic control biopsies. The phenotypical changes and frequency of satellite cells were investigated using PAX 7 immunohistochemistry and western blot. C2C12 myoblasts were used in vitro, to investigate the effect of ischaemia on muscle progenitor cell function. Myoblasts were exposed to simulated ischaemia for 24, 48 and 72hrs. Proliferation rates were assessed using an MTT assay. Differentiation and apoptosis were assessed by MYOD and cleaved caspase 3 western blotting respectively. Results There is an increased expression of PAX 7 in CLI muscle biopsies, shown by both immunostaining and western blot analysis, suggesting an increased number of SCs in ischaemic human skeletal muscle (p<0.05). Myoblasts cultured in ischaemic conditions demonstrated decreased cell proliferation, reduced myogenic differentiation (decreased MYOD expression), and increased apoptosis (increased cleaved caspase 3 expression). Conclusion Despite an upregulation of SCs in ischaemic tissue, their function is suppressed in ischaemic conditions and this may be contributing to the poor functional recovery of patients post revascularisation. Enhancement of muscle regeneration in ischaemia may be a useful therapeutic adjunct in the treatment of CLI.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Theodora Pavlidou ◽  
Milica Marinkovic ◽  
Marco Rosina ◽  
Claudia Fuoco ◽  
Simone Vumbaca ◽  
...  

The regeneration of the muscle tissue relies on the capacity of the satellite stem cell (SC) population to exit quiescence, divide asymmetrically, proliferate, and differentiate. In age-related muscle atrophy (sarcopenia) and several dystrophies, regeneration cannot compensate for the loss of muscle tissue. These disorders are associated with the depletion of the satellite cell pool or with the loss of satellite cell functionality. Recently, the establishment and maintenance of quiescence in satellite cells have been linked to their metabolic state. In this work, we aimed to modulate metabolism in order to preserve the satellite cell pool. We made use of metformin, a calorie restriction mimicking drug, to ask whether metformin has an effect on quiescence, proliferation, and differentiation of satellite cells. We report that satellite cells, when treated with metformin in vitro, ex vivo, or in vivo, delay activation, Pax7 downregulation, and terminal myogenic differentiation. We correlate the metformin-induced delay in satellite cell activation with the inhibition of the ribosome protein RPS6, one of the downstream effectors of the mTOR pathway. Moreover, in vivo administration of metformin induces a belated regeneration of cardiotoxin- (CTX-) damaged skeletal muscle. Interestingly, satellite cells treated with metformin immediately after isolation are smaller in size and exhibit reduced pyronin Y levels, which suggests that metformin-treated satellite cells are transcriptionally less active. Thus, our study suggests that metformin delays satellite cell activation and differentiation by favoring a quiescent, low metabolic state.


2011 ◽  
Vol 366 (1575) ◽  
pp. 2297-2306 ◽  
Author(s):  
Jennifer L. Shadrach ◽  
Amy J. Wagers

Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throughout life. Failure in satellite cell function can lead to delayed, impaired or failed recovery after muscle injury, and such failures become increasingly prominent in cases of progressive muscle disease and in old age. Recent progress in the isolation of muscle satellite cells and elucidation of the cellular and molecular mediators controlling their activity indicate that these cells represent promising therapeutic targets. Such satellite cell-based therapies may involve either direct cell replacement or development of drugs that enhance endogenous muscle repair mechanisms. Here, we discuss recent breakthroughs in understanding both the cell intrinsic and extrinsic regulators that determine the formation and function of muscle satellite cells, as well as promising paths forward to realizing their full therapeutic potential.


2015 ◽  
Vol 7 (2) ◽  
pp. 73
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Age-related muscle loss leads to lack of muscle strength, resulting in reduced posture and mobility and an increased risk of falls, all of which contribute to a decrease in quality of life. Skeletal muscle regeneration is a complex process, which is not yet completely understood.CONTENT: Skeletal muscle undergoes a progressive age-related loss in mass and function. Preservation of muscle mass depends in part on satellite cells, the resident stem cells of skeletal muscle. Reduced satellite cell function may contribute to the age-associated decrease in muscle mass. Recent studies have delineated that the aging process in organ stem cells is largely caused by age-specific changes in the differentiated niches, and that regenerative outcomes often depend on the age of the niche, rather than on stem cell age. It is likely that epigenetic states will be better define such key satellite cell features as prolonged quiescence and lineage fidelity. It is also likely that DNA and histone modifications will underlie many of the changes in aged satellite cells that account for age-related declines in functionality and rejuvenation through exposure to the systemic environment.SUMMARY: Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and regenerative capacity, which can lead to sarcopenia and increased mortality. Although the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Decreased muscle stem cell function in aging has long been shown to depend on altered environmental cues, whereas the contribution of intrinsic mechanisms remained less clear. Signals in the aged niche were shown to cause permanent defects in the ability of satellite cells to return to quiescence, ultimately also impairing the maintenance of self-renewing satellite cells. Therefore, only anti-aging strategies taking both factors, the stem cell niche and the stem cells per se, into consideration may ultimately be successful.KEYWORDS: satellite cell, muscle, aging, niche, regenerations


Author(s):  
Silvia Campanario ◽  
Ignacio Ramírez-Pardo ◽  
Xiaotong Hong ◽  
Joan Isern ◽  
Pura Muñoz-Cánoves

The skeletal muscle tissue in the adult is relatively stable under normal conditions but retains a striking ability to regenerate by its resident stem cells (satellite cells). Satellite cells exist in a quiescent (G0) state; however, in response to an injury, they reenter the cell cycle and start proliferating to provide sufficient progeny to form new myofibers or undergo self-renewal and returning to quiescence. Maintenance of satellite cell quiescence and entry of satellite cells into the activation state requires autophagy, a fundamental degradative and recycling process that preserves cellular proteostasis. With aging, satellite cell regenerative capacity declines, correlating with loss of autophagy. Enhancing autophagy in aged satellite cells restores their regenerative functions, underscoring this proteostatic activity’s relevance for tissue regeneration. Here we describe two strategies for assessing autophagic activity in satellite cells from GFP-LC3 reporter mice, which allows direct autophagosome labeling, or from non-transgenic (wild-type) mice, where autophagosomes can be immunostained. Treatment of GFP-LC3 or WT satellite cells with compounds that interfere with autophagosome-lysosome fusion enables measurement of autophagic activity by flow cytometry and immunofluorescence. Thus, the methods presented permit a relatively rapid assessment of autophagy in stem cells from skeletal muscle in homeostasis and in different pathological scenarios such as regeneration, aging or disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean M. Buchanan ◽  
Feodor D. Price ◽  
Alessandra Castiglioni ◽  
Amanda Wagner Gee ◽  
Joel Schneider ◽  
...  

Abstract Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giovanna Rigillo ◽  
Valentina Basile ◽  
Silvia Belluti ◽  
Mirko Ronzio ◽  
Elisabetta Sauta ◽  
...  

AbstractThe transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.


2002 ◽  
Vol 159 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Atsushi Asakura ◽  
Patrick Seale ◽  
Adele Girgis-Gabardo ◽  
Michael A. Rudnicki

Skeletal muscle contains myogenic progenitors called satellite cells and muscle-derived stem cells that have been suggested to be pluripotent. We further investigated the differentiation potential of muscle-derived stem cells and satellite cells to elucidate relationships between these two populations of cells. FACS® analysis of muscle side population (SP) cells, a fraction of muscle-derived stem cells, revealed expression of hematopoietic stem cell marker Sca-1 but did not reveal expression of any satellite cell markers. Muscle SP cells were greatly enriched for cells competent to form hematopoietic colonies. Moreover, muscle SP cells with hematopoietic potential were CD45 positive. However, muscle SP cells did not differentiate into myocytes in vitro. By contrast, satellite cells gave rise to myocytes but did not express Sca-1 or CD45 and never formed hematopoietic colonies. Importantly, muscle SP cells exhibited the potential to give rise to both myocytes and satellite cells after intramuscular transplantation. In addition, muscle SP cells underwent myogenic specification after co-culture with myoblasts. Co-culture with myoblasts or forced expression of MyoD also induced muscle differentiation of muscle SP cells prepared from mice lacking Pax7 gene, an essential gene for satellite cell development. Therefore, these data document that satellite cells and muscle-derived stem cells represent distinct populations and demonstrate that muscle-derived stem cells have the potential to give rise to myogenic cells via a myocyte-mediated inductive interaction.


Author(s):  
Yasuro Furuichi ◽  
Yuki Kawabata ◽  
Miho Aoki ◽  
Yoshitaka Mita ◽  
Nobuharu L. Fujii ◽  
...  

Glucose is a major energy source consumed by proliferating mammalian cells. Therefore, in general, proliferating cells have the preference of high glucose contents in extracellular environment. Here, we showed that high glucose concentrations impede the proliferation of satellite cells, which are muscle-specific stem cells, under adherent culture conditions. We found that the proliferation activity of satellite cells was higher in glucose-free DMEM growth medium (low-glucose medium with a glucose concentration of 2 mM) than in standard glucose DMEM (high-glucose medium with a glucose concentration of 19 mM). Satellite cells cultured in the high-glucose medium showed a decreased population of reserve cells, identified by staining for Pax7 expression, suggesting that glucose concentration affects cell fate determination. In conclusion, glucose is a factor that decides the cell fate of skeletal muscle-specific stem cells. Due to this unique feature of satellite cells, hyperglycemia may negatively affect the regenerative capability of skeletal muscle myofibers and thus facilitate sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document