Late Holocene seasonal temperature variability of the western Scottish shelf (St Kilda) recorded in fossil shells of the bivalve Glycymeris glycymeris

2021 ◽  
Vol 562 ◽  
pp. 110146
Author(s):  
Stella J. Alexandroff ◽  
Paul G. Butler ◽  
Philip R. Hollyman ◽  
Bernd R. Schöne ◽  
James D. Scourse
2018 ◽  
Author(s):  
Matthew E. Clapham ◽  
◽  
Sarah E. Greene ◽  
Alexander Farnsworth ◽  
Dan J. Lunt ◽  
...  

2021 ◽  
Author(s):  
Cristina Vegas Cañas ◽  
J. Fidel González Rouco ◽  
Jorge Navarro Montesinos ◽  
Elena García Bustamante ◽  
Etor E. Lucio Eceiza ◽  
...  

<p>This work provides a first assessment of temperature variability from interannual to multidecadal timescales in Sierra de Guadarrama, located in central Spain, from observations and regional climate model (RCM) simulations. Observational data are provided by the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet) at higher altitudes, up to 2225 masl, and by the Spanish Meteorological Agency (AEMet) at lower sites. An experiment at high horizontal resolution of 1 km using the Weather Research and Forecasting (WRF) RCM, feeding from ERA Interim inputs, is used. Through model-data comparison, it is shown that the simulations are annually and seasonally highly representative of the observations, although there is a tendency in the model to underestimate observational temperatures, mostly at high altitudes. Results show that WRF provides an added value in relation to the reanalysis, with improved correlation and error metrics relative to observations.</p><p>The analysis of temperature trends shows a warming in the area during the last 20 years, very significant in autumn. When spanning the analysis to the whole observational period, back to the beginning of the 20th century at some sites, significant annual and seasonal temperature increases of 1℃/decade develop, most of them happening during de 1970s, although not as intense as during the last 20 years.</p><p>The temporal variability of temperature anomalies in the Sierra de Guadarrama is highly correlated with the temperatures in the interior of the Iberian Peninsula. This relationship can be extended broadly over south-western Europe.</p>


Thorax ◽  
2018 ◽  
Vol 73 (10) ◽  
pp. 951-958 ◽  
Author(s):  
Shengzhi Sun ◽  
Francine Laden ◽  
Jaime E Hart ◽  
Hong Qiu ◽  
Yan Wang ◽  
...  

BackgroundClimate change increases global mean temperature and changes short-term (eg, diurnal) and long-term (eg, intraseasonal) temperature variability. Numerous studies have shown that mean temperature and short-term temperature variability are both associated with increased respiratory morbidity or mortality. However, data on the impact of long-term temperature variability are sparse.ObjectiveWe aimed to assess the association of intraseasonal temperature variability with respiratory disease hospitalisations among elders.MethodsWe ascertained the first occurrence of emergency hospital admissions for respiratory diseases in a prospective Chinese elderly cohort of 66 820 older people (≥65 years) with 10–13 years of follow-up. We used an ordinary kriging method based on 22 weather monitoring stations in Hong Kong to spatially interpolate daily ambient temperature for each participant’s residential address. Seasonal temperature variability was defined as the SD of daily mean summer (June–August) or winter (December–February) temperatures. We applied Cox proportional hazards regression with time-varying exposure of seasonal temperature variability to respiratory admissions.ResultsDuring the follow-up time, we ascertained 12 689 cases of incident respiratory diseases, of which 6672 were pneumonia and 3075 were COPD. The HRs per 1°C increase in wintertime temperature variability were 1.20 (95% CI 1.08 to 1.32), 1.15 (1.01 to 1.31) and 1.41 (1.15 to 1.71) for total respiratory diseases, pneumonia and COPD, respectively. The associations were not statistically significant for summertime temperature variability.ConclusionWintertime temperature variability was associated with higher risk of incident respiratory diseases.


2007 ◽  
Vol 71 (4) ◽  
pp. 918-928 ◽  
Author(s):  
Julien Thébault ◽  
Laurent Chauvaud ◽  
Jacques Clavier ◽  
Jennifer Guarini ◽  
Robert B. Dunbar ◽  
...  

The Holocene ◽  
2016 ◽  
Vol 27 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Camille Butruille ◽  
Veronica Rohde Krossa ◽  
Christian Schwab ◽  
Mara Weinelt

Reconstruction of Skagerrak deep-water renewal is used to assess regional changes in winter thermal conditions over the past 6800 years. Changes in winter climate conditions from the Skagerrak region are in turn linked to shifts in Holocene large-scale atmospheric circulation patterns prevailing over northern Europe. We use Melonis barleeanus Mg/Ca from two sediment cores in the central Skagerrak to reconstruct temperature of Skagerrak intermediate water, representing the warm season temperature variability, and deep water, for monitoring Skagerrak deep-water renewal, reflecting the winter temperature variability. In addition, M. barleeanus δ18O is used from the deeper core to reconstruct salinity, also monitoring the deep-water renewal. Our results show that the Skagerrak deep-water experienced phases of particularly enhanced renewal during the mid-Holocene reflecting severe winter conditions, followed by a general shift to reduced renewal as a consequence of milder winter conditions over the North Sea around 3500 cal. yr BP. The late-Holocene shift was most likely related to the onset of a regime with intensified winter westerly winds directed toward northern Europe and an increased inflow of North Atlantic water into the Skagerrak–North Sea reflecting more maritime climate conditions. On millennial scale, cold phases in our deep-water records match with low winter precipitation phases in western Norway. They are associated with distinct increases in ice rafted debris (IRD) in North Atlantic sediments, suggesting that phases of iceberg discharge in the Atlantic were associated with cold and dry winter conditions over northern Europe. Interestingly, the cold event centered around 5900 cal. yr BP appears to be only associated with winter variability, while the following one at 4200 cal. yr BP is documented in our winter record, as well as in records related to warmer seasons.


The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 785-792 ◽  
Author(s):  
Guoqiang Chu ◽  
Qing Sun ◽  
Xiaohua Wang ◽  
Meimei Liu ◽  
Yuan Lin ◽  
...  

Seasonal temperature variability over longer timescales could offer new insights into understanding different forcing factors and response processes in the climate system. Here we report an alkenone-based temperature reconstruction for growing season over the past 1600 years from the varved sediment in Lake Sihailongwan, northeastern China. The most notable cold spells occurred during the periods ad 480–860, ad 1260–1300, ad 1510–1570 and ad 1800–1900 with a temperature decrease of about 1°C compared with the 20th century. Based on the historical evidence such as ‘snow or frost in the summertime’ and ‘no ice during the wintertime’, we compile extreme cold summer events and warm winter events over the past 1600 years. The ‘Little Ice Age’ time period experienced more extreme cold summer/warm winter events, while the ‘Medieval Warm Period’ had milder winters. Comparatively, the natural proxy data show a general similar pattern with historical documents at decadal time scales, except for between ad 1620 and 1720. Our results show multidecadal to centennial variations in seasonal temperature, possibly caused by interactions of external natural forcing and atmosphere–ocean circulations.


Sign in / Sign up

Export Citation Format

Share Document