THE INFLUENCE OF SEASONAL TEMPERATURE VARIABILITY ON SURVIVAL DURING BACKGROUND AND MASS EXTINCTIONS

2018 ◽  
Author(s):  
Matthew E. Clapham ◽  
◽  
Sarah E. Greene ◽  
Alexander Farnsworth ◽  
Dan J. Lunt ◽  
...  
2021 ◽  
Author(s):  
Cristina Vegas Cañas ◽  
J. Fidel González Rouco ◽  
Jorge Navarro Montesinos ◽  
Elena García Bustamante ◽  
Etor E. Lucio Eceiza ◽  
...  

<p>This work provides a first assessment of temperature variability from interannual to multidecadal timescales in Sierra de Guadarrama, located in central Spain, from observations and regional climate model (RCM) simulations. Observational data are provided by the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet) at higher altitudes, up to 2225 masl, and by the Spanish Meteorological Agency (AEMet) at lower sites. An experiment at high horizontal resolution of 1 km using the Weather Research and Forecasting (WRF) RCM, feeding from ERA Interim inputs, is used. Through model-data comparison, it is shown that the simulations are annually and seasonally highly representative of the observations, although there is a tendency in the model to underestimate observational temperatures, mostly at high altitudes. Results show that WRF provides an added value in relation to the reanalysis, with improved correlation and error metrics relative to observations.</p><p>The analysis of temperature trends shows a warming in the area during the last 20 years, very significant in autumn. When spanning the analysis to the whole observational period, back to the beginning of the 20th century at some sites, significant annual and seasonal temperature increases of 1℃/decade develop, most of them happening during de 1970s, although not as intense as during the last 20 years.</p><p>The temporal variability of temperature anomalies in the Sierra de Guadarrama is highly correlated with the temperatures in the interior of the Iberian Peninsula. This relationship can be extended broadly over south-western Europe.</p>


Thorax ◽  
2018 ◽  
Vol 73 (10) ◽  
pp. 951-958 ◽  
Author(s):  
Shengzhi Sun ◽  
Francine Laden ◽  
Jaime E Hart ◽  
Hong Qiu ◽  
Yan Wang ◽  
...  

BackgroundClimate change increases global mean temperature and changes short-term (eg, diurnal) and long-term (eg, intraseasonal) temperature variability. Numerous studies have shown that mean temperature and short-term temperature variability are both associated with increased respiratory morbidity or mortality. However, data on the impact of long-term temperature variability are sparse.ObjectiveWe aimed to assess the association of intraseasonal temperature variability with respiratory disease hospitalisations among elders.MethodsWe ascertained the first occurrence of emergency hospital admissions for respiratory diseases in a prospective Chinese elderly cohort of 66 820 older people (≥65 years) with 10–13 years of follow-up. We used an ordinary kriging method based on 22 weather monitoring stations in Hong Kong to spatially interpolate daily ambient temperature for each participant’s residential address. Seasonal temperature variability was defined as the SD of daily mean summer (June–August) or winter (December–February) temperatures. We applied Cox proportional hazards regression with time-varying exposure of seasonal temperature variability to respiratory admissions.ResultsDuring the follow-up time, we ascertained 12 689 cases of incident respiratory diseases, of which 6672 were pneumonia and 3075 were COPD. The HRs per 1°C increase in wintertime temperature variability were 1.20 (95% CI 1.08 to 1.32), 1.15 (1.01 to 1.31) and 1.41 (1.15 to 1.71) for total respiratory diseases, pneumonia and COPD, respectively. The associations were not statistically significant for summertime temperature variability.ConclusionWintertime temperature variability was associated with higher risk of incident respiratory diseases.


2007 ◽  
Vol 71 (4) ◽  
pp. 918-928 ◽  
Author(s):  
Julien Thébault ◽  
Laurent Chauvaud ◽  
Jacques Clavier ◽  
Jennifer Guarini ◽  
Robert B. Dunbar ◽  
...  

2021 ◽  
Vol 562 ◽  
pp. 110146
Author(s):  
Stella J. Alexandroff ◽  
Paul G. Butler ◽  
Philip R. Hollyman ◽  
Bernd R. Schöne ◽  
James D. Scourse

The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 785-792 ◽  
Author(s):  
Guoqiang Chu ◽  
Qing Sun ◽  
Xiaohua Wang ◽  
Meimei Liu ◽  
Yuan Lin ◽  
...  

Seasonal temperature variability over longer timescales could offer new insights into understanding different forcing factors and response processes in the climate system. Here we report an alkenone-based temperature reconstruction for growing season over the past 1600 years from the varved sediment in Lake Sihailongwan, northeastern China. The most notable cold spells occurred during the periods ad 480–860, ad 1260–1300, ad 1510–1570 and ad 1800–1900 with a temperature decrease of about 1°C compared with the 20th century. Based on the historical evidence such as ‘snow or frost in the summertime’ and ‘no ice during the wintertime’, we compile extreme cold summer events and warm winter events over the past 1600 years. The ‘Little Ice Age’ time period experienced more extreme cold summer/warm winter events, while the ‘Medieval Warm Period’ had milder winters. Comparatively, the natural proxy data show a general similar pattern with historical documents at decadal time scales, except for between ad 1620 and 1720. Our results show multidecadal to centennial variations in seasonal temperature, possibly caused by interactions of external natural forcing and atmosphere–ocean circulations.


2021 ◽  
Vol 23 (4) ◽  
pp. 402-408
Author(s):  
SUCHIT K. RAI ◽  
SUNIL KUMAR ◽  
MANOJ CHAUDHARY

Consequences of global warming and climate change are major threat to humans and their socio-economic activities. Agriculture of Bundelkhand region is supposed to be more vulnerable due to emerging scenario of climate change and poor socio-economic status of farming community. Many studies carried out elsewhere have shown evidence of regional temperature variability along with global climate changes. This study focuses on the temporal variability and trend in annual and seasonal temperature (1901-2012) at six locations of Bundelkhand region. The results of the analysis reveal that the annual maximum (TMax) and minimum (TMin) temperature has significantly increasing trend in all the locations in the range of 0.5 to 2.0oC 100 year-1 and 0.5 to 1.1 oC 100 year-1, respectively. Seasonal analysis revealed warming trend in both TMax (0.6-2.6oC100 year-1) and TMin (0.9 to 2.3 oC 100 year-1) during post-monsoon and winter season in all the locations. Majority of the locations showed cooling trend (0.3-1.0 oC 100 year-1), in the mean maximum and minimum temperature during monsoon season except at two locations i.e Jhansi and Banda. However, a significant positive trends (2.9 oC) in the TMin was found for the period of hundred years at Banda district during monsoon season.


Sign in / Sign up

Export Citation Format

Share Document