An Assessment of Observed and Simulated Temperature Variability in Sierra de Guadarrama (Spain)

Author(s):  
Cristina Vegas Cañas ◽  
J. Fidel González Rouco ◽  
Jorge Navarro Montesinos ◽  
Elena García Bustamante ◽  
Etor E. Lucio Eceiza ◽  
...  

<p>This work provides a first assessment of temperature variability from interannual to multidecadal timescales in Sierra de Guadarrama, located in central Spain, from observations and regional climate model (RCM) simulations. Observational data are provided by the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet) at higher altitudes, up to 2225 masl, and by the Spanish Meteorological Agency (AEMet) at lower sites. An experiment at high horizontal resolution of 1 km using the Weather Research and Forecasting (WRF) RCM, feeding from ERA Interim inputs, is used. Through model-data comparison, it is shown that the simulations are annually and seasonally highly representative of the observations, although there is a tendency in the model to underestimate observational temperatures, mostly at high altitudes. Results show that WRF provides an added value in relation to the reanalysis, with improved correlation and error metrics relative to observations.</p><p>The analysis of temperature trends shows a warming in the area during the last 20 years, very significant in autumn. When spanning the analysis to the whole observational period, back to the beginning of the 20th century at some sites, significant annual and seasonal temperature increases of 1℃/decade develop, most of them happening during de 1970s, although not as intense as during the last 20 years.</p><p>The temporal variability of temperature anomalies in the Sierra de Guadarrama is highly correlated with the temperatures in the interior of the Iberian Peninsula. This relationship can be extended broadly over south-western Europe.</p>

2020 ◽  
Author(s):  
Cristina Vegas Cañas ◽  
J. Fidel González Rouco ◽  
Jorge Navarro Montesinos ◽  
Etor E. Lucio Eceiza ◽  
Elena García Bustamante ◽  
...  

<p>This work provides a first assessment of temperature variability from interannual to multidecadal timescales in the Sierra de Guadarrama, located in central Spain, from observations and regional climate model (RCM) simulations. Observational data are provided by the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet) at higher altitudes and by the Spanish Meteorological Agency (AEMet) at lower sites. An experiment at high horizontal resolution of 1 km using the Weather Research and Forecasting (WRF) RCM, feeding from ERA Interim inputs, is used. Through model-data comparison, it is shown that the simulations are annually and seasonally highly representative of the observations, although there is a tendency in the model to underestimate observational temperatures, mostly at low altitudes. Results show that WRF provides an added value in relation to the reanalysis, with improved correlation and error metrics relative to observations.</p><p>The analysis of long term trends shows no significant temperature trends in the area during the last 20 years. However, when spanning the analysis to the whole observational period, back to the beginning of the 20th century at some sites, significant annual and seasonal temperature increases of ca. 1degC/century develop, most of it happening during de 1970s.</p><p>The temporal variability of temperature anomalies in the Sierra de Guadarrama is highly correlated with the temperatures in the interior of the Iberian Peninsula. This relationship can be extended broadly over south-western Europe.</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 262 ◽  
Author(s):  
Coraline Wyard ◽  
Sébastien Doutreloup ◽  
Alexandre Belleflamme ◽  
Martin Wild ◽  
Xavier Fettweis

The use of regional climate models (RCMs) can partly reduce the biases in global radiative flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the other reanalyses that are used in this study. The results suggest that the solar brightening observed since the 1980s in Belgium has mainly been due to decreasing cloud cover.


2020 ◽  
Vol 11 (2) ◽  
pp. 377-394 ◽  
Author(s):  
Minchao Wu ◽  
Grigory Nikulin ◽  
Erik Kjellström ◽  
Danijel Belušić ◽  
Colin Jones ◽  
...  

Abstract. We investigate the impact of model formulation and horizontal resolution on the ability of Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs (SMHI-RCA4 and HCLIM38-ALADIN) are utilized for downscaling the ERA-Interim reanalysis over Africa at four different resolutions: 25, 50, 100, and 200 km. In addition to the two RCMs, two different parameter settings (configurations) of the same RCA4 are used. By contrasting different downscaling experiments, it is found that model formulation has the primary control over many aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean precipitation are mostly defined by model formulation, while the magnitude of the biases is controlled by resolution. In a similar way, the phase of the diurnal cycle in precipitation is completely controlled by model formulation (convection scheme), while its amplitude is a function of resolution. However, the impact of higher resolution on the time-mean climate is mixed. An improvement in one region/season (e.g. reduction in dry biases) often corresponds to a deterioration in another region/season (e.g. amplification of wet biases). At the same time, higher resolution leads to a more realistic distribution of daily precipitation. Consequently, even if the time-mean climate is not always greatly sensitive to resolution, the realism of the simulated precipitation increases as resolution increases. Our results show that improvements in the ability of RCMs to simulate precipitation in Africa compared to their driving reanalysis in many cases are simply related to model formulation and not necessarily to higher resolution. Such model formulation related improvements are strongly model dependent and can, in general, not be considered as an added value of downscaling.


Author(s):  
Cécile Caillaud ◽  
Samuel Somot ◽  
Antoinette Alias ◽  
Isabelle Bernard-Bouissières ◽  
Quentin Fumière ◽  
...  

AbstractModelling the rare but high-impact Mediterranean Heavy Precipitation Events (HPEs) at climate scale remains a largely open scientific challenge. The issue is adressed here by running a 38-year-long continuous simulation of the CNRM-AROME Convection-Permitting Regional Climate Model (CP-RCM) at a 2.5 km horizontal resolution and over a large pan-Alpine domain. First, the simulation is evaluated through a basic Eulerian statistical approach via a comparison with selected high spatial and temporal resolution observational datasets. Northwestern Mediterranean fall extreme precipitation is correctly represented by CNRM-AROME at a daily scale and even better at an hourly scale, in terms of location, intensity, frequency and interannual variability, despite an underestimation of daily and hourly highest intensities above 200 mm/day and 40 mm/h, respectively. A comparison of the CP-RCM with its forcing convection-parameterised 12.5 km Regional Climate Model (RCM) demonstrates a clear added value for the CP-RCM, confirming previous studies. Secondly, an object-oriented Lagrangian approach is proposed with the implementation of a precipitating system detection and tracking algorithm, applied to the model and the reference COMEPHORE precipitation dataset for twenty fall seasons. Using French Mediterranean HPEs as objects, CNRM-AROME’s ability to represent the main characteristics of fall convective systems and tracks is highlighted in terms of number, intensity, area, duration, velocity and severity. Further, the model is able to simulate long-lasting and severe extreme fall events similar to observations. However, it fails to reproduce the precipitating systems and tracks with the highest intensities (maximum intensities above 40 mm/h) well, and the model’s tendency to overestimate the cell size increases with intensity.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Stefan Polanski ◽  
Annette Rinke ◽  
Klaus Dethloff

The regional climate model HIRHAM has been applied over the Asian continent to simulate the Indian monsoon circulation under present-day conditions. The model is driven at the lateral and lower boundaries by European reanalysis (ERA40) data for the period from 1958 to 2001. Simulations with a horizontal resolution of 50 km are carried out to analyze the regional monsoon patterns. The focus in this paper is on the validation of the long-term summer monsoon climatology and its variability concerning circulation, temperature, and precipitation. Additionally, the monsoonal behavior in simulations for wet and dry years has been investigated and compared against several observational data sets. The results successfully reproduce the observations due to a realistic reproduction of topographic features. The simulated precipitation shows a better agreement with a high-resolution gridded precipitation data set over the central land areas of India and in the higher elevated Tibetan and Himalayan regions than ERA40.


2017 ◽  
Vol 49 (11-12) ◽  
pp. 3813-3838 ◽  
Author(s):  
Thierry C. Fotso-Nguemo ◽  
Derbetini A. Vondou ◽  
Wilfried M. Pokam ◽  
Zéphirin Yepdo Djomou ◽  
Ismaïla Diallo ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1543
Author(s):  
Reinhardt Pinzón ◽  
Noriko N. Ishizaki ◽  
Hidetaka Sasaki ◽  
Tosiyuki Nakaegawa

To simulate the current climate, a 20-year integration of a non-hydrostatic regional climate model (NHRCM) with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively) was nested within the AGCM. The three models did a similarly good job of simulating surface air temperature, and the spatial horizontal resolution did not affect these statistics. NHRCM02 did a good job of reproducing seasonal variations in surface air temperature. NHRCM05 overestimated annual mean precipitation in the western part of Panama and eastern part of the Pacific Ocean. NHRCM05 is responsible for this overestimation because it is not seen in MRI-AGCM. NHRCM02 simulated annual mean precipitation better than NHRCM05, probably due to a convection-permitting model without a convection scheme, such as the Kain and Fritsch scheme. Therefore, the finer horizontal resolution of NHRCM02 did a better job of replicating the current climatological mean geographical distributions and seasonal changes of surface air temperature and precipitation.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xin-Min Zeng ◽  
Ming Wang ◽  
Yujian Zhang ◽  
Yang Wang ◽  
Yiqun Zheng

The regional climate model, RegCM3, is used to simulate the 2004 summer surface air temperature (SAT) and precipitation at different horizontal (i.e., 30, 60, and 90 km) and vertical resolutions (i.e., 14, 18, and 23 layers). Results showed that increasing resolution evidently changes simulated SATs with regional characteristics. For example, simulated SATs are apparently better produced when horizontal resolution increases from 60 to 30 km under the 23 layers. Meanwhile, the SATs over the entire area are more sensitive to vertical resolution than horizontal resolution. The subareas present higher sensitivities than the total area, with larger horizontal resolution effects than those of vertical resolution. For precipitation, increasing resolution shows higher impact compared to SAT, with higher sensitivity induced by vertical resolution than by horizontal resolution, especially in rainy South China. The best SAT/precipitation can be produced only when the horizontal and vertical resolutions are reasonably configured. This indicates that different resolutions lead to different atmospheric thermodynamic states. Because of the dry climate and low soil heat capacity in Northern China, resolution changes easily modify surface energy fluxes, hence the SAT; due to the rainy and humid climate in South China, resolution changes likely strongly influence grid-scale structure of clouds and therefore precipitation.


Sign in / Sign up

Export Citation Format

Share Document