Oxidising agents and its effect on human dentine fluorescence diagnostic measurements

2020 ◽  
Vol 31 ◽  
pp. 101950
Author(s):  
Jonathan Hong-Man Sin ◽  
Stephen Hamlet ◽  
Laurence J. Walsh ◽  
Robert M. Love ◽  
Roy George
Keyword(s):  
2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


2017 ◽  
Vol 68 (5) ◽  
pp. 928-932
Author(s):  
Agripina Zaharia ◽  
Viorica Ghisman Plescan ◽  
Elena Maria Anghel ◽  
Viorica Musat

The purpose of this work is to induce biomimetic remineralization of acid etched coronal human dentine in artificial saliva (AS) under agarose (A) hydrogel or chitosan (CS)-A hydrogel action. The investigations focused on the morphology, chemical composition and crystalline structure of the new remineralized layers grown onto the etched dentinal surface (R) using scanning electron microscopy coupled with energy dispersive X-ray spectrometry and micro-Raman spectroscopy. Experimental results showed that remineralized layers grown in the presence of A or CS-A hydrogels consist in B-type Ca-deficient hydroxyapatite (HAP). After 7 days treatment into artificial saliva under agarose hydrogel, nanorod-like extrafibrilar HAP crystals randomly self-assembled in a discontinuous layer were formed, while in presence of chitosan-agarose hydrogel a continuous compact CS-HAP composite layer was obtained. The new biomimetic layer (A-CS4) formed after 4 days on dentine surface under A-CS hydrogel has higher crystallinity. Longer exposed (7 days) dentine in the presence of agarose hydrogel shows a higher mineral-to-collagen ratio (A7). Since dentine mineralization increases, the collagen quality factor decreases in succession A-CS4]R]A7. Results show a benefic effect of chitosan on remineralization of etched dentine.


1999 ◽  
Vol 33 (4) ◽  
pp. 275-280 ◽  
Author(s):  
K. Kawasaki ◽  
J. Ruben ◽  
I. Stokroos ◽  
O. Takagi ◽  
J. Arends
Keyword(s):  

2003 ◽  
Vol 29 (1) ◽  
pp. 20-22 ◽  
Author(s):  
A.L. Najar ◽  
P.C. Saquy ◽  
L.P. Vansan ◽  
Manoel D. Sousa-Neto

1993 ◽  
Vol 38 (12) ◽  
pp. 1093-1098 ◽  
Author(s):  
M. Murai ◽  
M. Ikeda ◽  
T. Yanagihara ◽  
G. Hara ◽  
K. Kato ◽  
...  

2021 ◽  
Author(s):  
Debayan Dasgupta ◽  
Shanmukh Srinivas Peddi ◽  
Deepak K. Saini ◽  
Ambarish Ghosh

<div> <div> <div> <p>More than 10% of root canal treatments undergo failure worldwide due to remnant bacteria deep in the dentinal tubules located within the dentine tissue of human teeth. Owing to the complex and narrow geometry of the tubules, current techniques relying on passive diffusion of anti-bacterial agents are inadequate. Here, we present a new treatment method using actively maneuvered nanobots, which can be incorporated during standard root canal procedure. Our technique will enable dentists to execute procedures inside the dentine not yet possible by current state of the art. We demonstrate that magnetically driven nanobots can reach the depths of the tubules up to hundred times faster than current clinical practices. Subtle modifications of the magnetic drive allowed deep implantation of the nanobots isotopically distributed throughout the dentine, along with spatially controlled retrieval from selected areas. Finally, we demonstrate the integration of bactericidal therapeutic modality with the nanobots, thereby validating the tremendous potential of nanobots in dentistry, and nanomedicine in general. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document