In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi

2014 ◽  
Vol 114 ◽  
pp. 67-71 ◽  
Author(s):  
Vinod Kumar ◽  
C.S. Mathela ◽  
A.K. Tewari ◽  
K.S. Bisht
2012 ◽  
Vol 15 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Paula Judith Perez Espitia ◽  
Nilda de Fátima Ferreira Soares ◽  
Laura Costa Moreira Botti ◽  
Nathália Ramos de Melo ◽  
Olinto Liparini Pereira ◽  
...  

Rot and damage caused by post-harvest phytopathogenic fungi affect fruit quality. Essential oils (EO) are considered as an alternative to fungicides. Postharvest diseases of fruits may also be controlled by the bagging approach and the use of antimicrobial packaging. Based on the beneficial properties of EO and the concepts of bagging and antimicrobial packaging, this study aimed to develop sachets containing EO to be used as part of an antimicrobial packaging system. The activities of oregano, cinnamon and lemon grass EO were evaluated testing the sachets in vitro against the phytopathogenic fungi Alternaria alternata, Fusarium semitectum, Lasiodiplodia theobromae and Rhizopus stolonifer. The effects of the sachets on the microbiological and physicochemical parameters of post-harvest papaya were also evaluated. Both pure and sachet-incorporated EO showed antifungal activity in vitro against all tested fungi. For papaya, sachets containing cinnamon, oregano and lemon grass showed a significant reduction in the growth of mesophilic aerobic bacteria, yeasts and mould, with the cinnamon sachet causing the greatest reduction in microorganisms at the end of the storage time. Physicochemical parameters of papaya, such as weight loss, colour, firmness, total soluble solids/titratable acidity ratio and pH were not significantly altered by the presence of EO sachets, thus not affecting the natural ripening process of the papaya.


2020 ◽  
Author(s):  
Luca Sancineto ◽  
Francesca Mangiavacchi ◽  
Agnieszka Dąbrowska ◽  
Agata Pacuła ◽  
Magdalena Obieziurska-Fabisiak ◽  
...  

New Ebselen-like derivatives resulted to be very strong in vitro inhibitors of SARS-CoV-2 main protease. We demonstrated that this activity mainly depends on the electrophilicity of the selenium atom that is considerably higher in the N-substituted 1,2- benzoselenazol-3(2H)-ones respect to the corresponding diselenides allowing it to be rapidly attached by free thiols affording sulfur-selenium intermediates that are further subjected to thiol exchange processes. This data paints a very complex scenario that requires us to consider Ebselen and Ebselen-like derivatives as potential electrophilic substrates for the several other free thiols present in the cell beside the target free cysteine. The sulfur selenium intermediates are milder electrophiles that could be theoretically implicated in both the detoxification process as well as in the final enzymatic inhibition. We here demonstrated that the in vitro inhibition activity is not fully reproduced in the prevention of viral replication in the cell-based assay. This indicates that the structure of the substituents introduced in the Ebselen scaffold is a crucial factor to control the reactivity of the selenated molecule in the network of thiol exchanges, as well as for molecular recognition of the targeted enzymatic cysteine. For this reason, an in-depth investigation is strongly desirable to better understand how to increase the activity and the selectivity of Ebselen derivatives overcoming the issues of the apparent PAINS-like role of Ebselen. Furthermore, besides the antiviral activity, thee selected compounds also showed a different ability to reduce the virus-induced cytopathic effect, indicating that other mechanisms could be implicated. One may consider here the well-known cytoprotective antioxidant activity of Ebselen and its derivatives.<p></p>


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1642
Author(s):  
Adriana Skendi ◽  
Dimitrios Ν. Katsantonis ◽  
Paschalina Chatzopoulou ◽  
Maria Irakli ◽  
Maria Papageorgiou

The antifungal effect of aromatic plants (oregano, thyme, and Satureja) in dry form and as essential oils was evaluated in vitro (in potato dextrose agar (PDA)) and in bread against two phytopathogenic fungi found in food (Aspergillusniger and Penicillium). Gas and liquid chromatography were used to analyze essential oils attained by hydrodistillation of the aerial parts of the aromatic plants and of the dried plant aqueous solutions that were autoclaved for 20 min at 121 °C before analysis. Carvacrol, α-pinene, p-cymene, and γ-terpinene were the main components of the essential oils, whereas carvacrol, rosmarinic and caffeic acids were the main components of the water extracts. In vitro antifungal test results showed that the addition of plants in dry form had great antifungal potential against both fungal strains studied. Penicillium was more sensitive to the presence of aromatic plants than Aspergillus. Among the three plant species tested, thyme was the most potent antifungal against both fungi. For the bread product, all three aromatic plants studied showed inhibitory effects against both fungi. Results presented here suggest that oregano, thyme and Satureja incorporated in a bread recipe possess antimicrobial properties and are a potential source of antimicrobial ingredients for the food industry.


Author(s):  
Tahira Parveen ◽  
Kanika Sharma

Objective: In vitro antifungal activity of six essential oils of 1. Ocimum tenuiflorum (Purple leaves/Krishna Tulsi) 2. Cymbopogon citrates (Nimbu ghas), 3. Origanum majorina (Sweet majoram), 4. Ocimum citriodorum (Nimbu tulsi), 5. Ocimum bascillicum (Gulal tulsi), and 6. Ocimum sanctum (Green leaves/Shree tulsi) were investigated against economically important phytopathogenic fungi, Alternaria solani, isolated from infected chilly. Methods: The experiment was carried out by Whatman paper disc method using Whatman paper No.3 on Potato Dextrose Agar with three replicates. Five concentrations of each essential oils i.e., 20, 40, 60, 80 and 100% were assayed against the test fungus. The experiment was carried out at 27ᵒC and mycelial growth was measured after every third day, upto 15 d using statistical method.Results: It is an evident from this study that all the oils used in this study are inhibiting test fungi, oil of O. bascillicum and O. sanctum are completely (100%) inhibiting test fungi.Conclusion: It may be concluded from the above study that all the taken oils have a good potential to control plant pathogenic fungi and these could be considered for developing a new fungicide.


1996 ◽  
Vol 144 (9-10) ◽  
pp. 491-494 ◽  
Author(s):  
A. Zambonelli ◽  
A. Zechini D'Aulerio ◽  
A. Bianchi ◽  
A. Albasini

2021 ◽  
Vol 22 (20) ◽  
pp. 11283
Author(s):  
Mária Bodnár Mikulová ◽  
Dáša Kružlicová ◽  
Daniel Pecher ◽  
Andrea Petreni ◽  
Claudiu T. Supuran ◽  
...  

Primary sulfonamide derivatives with various heterocycles represent the most widespread group of potential human carbonic anhydrase (hCA) inhibitors with high affinity and selectivity towards specific isozymes from the hCA family. In this work, new 4-aminomethyl- and aminoethyl-benzenesulfonamide derivatives with 1,3,5-triazine disubstituted with a pair of identical amino acids, possessing a polar (Ser, Thr, Asn, Gln) and non-polar (Ala, Tyr, Trp) side chain, have been synthesized. The optimized synthetic, purification, and isolation procedures provided several pronounced benefits such as a short reaction time (in sodium bicarbonate aqueous medium), satisfactory yields for the majority of new products (20.6–91.8%, average 60.4%), an effective, well defined semi-preparative RP-C18 liquid chromatography (LC) isolation of desired products with a high purity (>97%), as well as preservation of green chemistry principles. These newly synthesized conjugates, plus their 4-aminobenzenesulfonamide analogues prepared previously, have been investigated in in vitro inhibition studies towards hCA I, II, IV and tumor-associated isozymes IX and XII. The experimental results revealed the strongest inhibition of hCA XII with low nanomolar inhibitory constants (Kis) for the derivatives with amino acids possessing non-polar side chains (7.5–9.6 nM). Various derivatives were also promising for some other isozymes.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhongfu Luo ◽  
Yu Deng ◽  
Bilan Luo ◽  
Yong Li ◽  
Qing Lan ◽  
...  

AbstractIn order to obtain novel botanical fungicides, three series of novel 6-substituted n-butyphthalide derivatives have been designed and synthesized via nucleophilic addition, reduction, nitrification, amination, sulfonation, Sandmeyer and Suzuki reaction. The mycelium growth rate method was used to evaluate the inhibition activity against eight phytopathogenic fungi in vitro. Preliminary bioassay tests showed that compounds 6f, 6n, 6p, 6r and 7a exhibited better activity for some fungi at 50 μg/mL than the positive drug hymexazol and lead compound n-butyphthalide (NBP). The preliminary structure–activity relationships indicated that the antifungal activity is significantly affected by the substituents on the benzene ring.


Author(s):  
Pavla Sládková ◽  
Eva Rejchrtová ◽  
Tomáš Komprda ◽  
Doubravka Rožnovská

The aim of this work was to test in vitro the ability of the components in the spice mix usually used for the production of the „paprikáš“ sausage (P) to inhibit the growth of tyramine and histamine forming microorganisms. The ability of the P spice mix components to inhibit the growth of the Pediococcus pentosaceus and Enterococcus faecalis CNRZ 238 species was tested by the agar diffusion method. The tested cultures were chosen as positive to a gene sequence for tyrosindecarboxylase (tyrDC). None of the tested P spice components or the mix as a whole inhibited growth of Pediococcus pentosaceus and Enterococcus faecalis CNRZ 238.


Sign in / Sign up

Export Citation Format

Share Document