scholarly journals BIOASSAY OF BOTANICAL OILS AGAINST ALTERNARIA SOLANI

Author(s):  
Tahira Parveen ◽  
Kanika Sharma

Objective: In vitro antifungal activity of six essential oils of 1. Ocimum tenuiflorum (Purple leaves/Krishna Tulsi) 2. Cymbopogon citrates (Nimbu ghas), 3. Origanum majorina (Sweet majoram), 4. Ocimum citriodorum (Nimbu tulsi), 5. Ocimum bascillicum (Gulal tulsi), and 6. Ocimum sanctum (Green leaves/Shree tulsi) were investigated against economically important phytopathogenic fungi, Alternaria solani, isolated from infected chilly. Methods: The experiment was carried out by Whatman paper disc method using Whatman paper No.3 on Potato Dextrose Agar with three replicates. Five concentrations of each essential oils i.e., 20, 40, 60, 80 and 100% were assayed against the test fungus. The experiment was carried out at 27ᵒC and mycelial growth was measured after every third day, upto 15 d using statistical method.Results: It is an evident from this study that all the oils used in this study are inhibiting test fungi, oil of O. bascillicum and O. sanctum are completely (100%) inhibiting test fungi.Conclusion: It may be concluded from the above study that all the taken oils have a good potential to control plant pathogenic fungi and these could be considered for developing a new fungicide.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Erika Anahí Contreras-Leal ◽  
Luis Fernando Corona-Pedraza ◽  
Élida Gastélum-Martínez

Abstract Background Fungi are one of the microorganisms that cause most damage to fruits worldwide, affecting their quality and consumption. Chemical controls with pesticides are used to diminish postharvest losses of fruits. However, biological control with microorganisms or natural compounds is an increasing alternative to protect fruits and vegetables. In this study, the antifungal effect of Streptomyces sp. CACIS-1.5CA on phytopathogenic fungi that cause postharvest tropical fruit rot was investigated. Main body Antagonistic activity was evaluated in vitro by the dual confrontation over fungal isolates obtained from grape, mango, tomato, habanero pepper, papaya, sweet orange, and banana. The results showed that antagonistic activity of the isolate CACIS-1.5CA was similar to the commercial strain Streptomyces lydicus WYEC 108 against the pathogenic fungi Colletotrichum sp., Alternaria sp., Aspergillus sp., Botrytis sp., Rhizoctonia sp., and Rhizopus sp. with percentages ranging from 30 to 63%. The bioactive extract obtained from CACIS-1.5 showed a strong inhibition of fungal spore germination, with percentages ranging from 92 to 100%. Morphological effects as irregular membrane border, deformation, shrinkage, and collapsed conidia were observed on the conidia. Molecularly, the biosynthetic clusters of genes for the polyketide synthase (PKS) type I, PKS type II, and NRPS were detected in the genome of Streptomyces sp. CACIS-1.5CA. Conclusions This study presented a novel Streptomyces strain as a natural alternative to the use of synthetic fungicides or other commercial products having antagonistic microorganisms that were used in the postharvest control of phytopathogenic fungi affecting fruits.


2008 ◽  
Vol 63 (9-10) ◽  
pp. 653-657 ◽  
Author(s):  
Dolores Pérez-Laínez ◽  
Rosario García-Mateos ◽  
Ruben San Miguel-Chávez ◽  
Marcos Soto-Hernández ◽  
Enrique Rodríguez-Pérez ◽  
...  

Calia secundiflora (Ortega) Yakovlev (Fabaceae) is considered a medicinal plant in Mexico but has scarcely been used because of the toxicity of its quinolizidine alkaloids. Several quinolizidine alkaloids have shown bactericidal, nematicidal, and fungicidal activities. The purpose of this study was to identify the alkaloids in the seeds and evaluate the activity of the organic extract on several phytopathogenic fungi and bacteria. An in vitro bioassay was conducted with species of the following phytopathogenic fungi: Alternaria solani, Fusarium oxysporum and Monilia fructicola; and of the following bacteria Pseudomonas sp., Xanthomonas campestris and Erwinia carotovora. Cytisine, lupinine, anagyrine, sparteine, N-methylcytisine, 5,6-dehydrolupanine, and lupanine were identified by liquid chromatography-mass spectrometry in the extract of seeds; the most abundant compound of the extract was cytisine. It was observed that the crude extract of Calia secundiflora was moderately active on bacteria and more potent on phytopathogenic fungi. In contrast cytisine showed the opposite effects.


2021 ◽  
Vol 18 ◽  
Author(s):  
Jyoti Gaba ◽  
Sunita Sharma ◽  
Harleen Kaur ◽  
Pardeep Kaur

Background: Thymol is a bioactive compound having many pharmacological activities. Objective: The present study was carried out to evaluate the fungi toxic effects of thymol and derivatives against phytopathogenic fungi of maize. Method: Thymol was derivatized to get formylated thymol, Mannich bases, and imine derivatives. All the synthesized thymol derivatives were characterized by their physical and spectral properties. Synthesized thymol derivatives were screened for their in vitro antifungal effects using poisoned food technique against three maize pathogenic fungi namely Fusarium moniliforme, Rhizoctonia solani and Dreschlera maydis. Results: Thymol and formylated thymol showed promising results for control of D. maydis with ED50 values less than standard carbendazim and comparable to standard mancozeb. These two compounds were further evaluated for control of D. maydis causative maydis leaf blight disease on maize plants grown in the field during the Kharif season (June to October) 2018. Conclusion: Thymol exhibited significant control of maydis leaf blight disease of maize and emerged as a potential alternative to synthetic fungicides used in cereal crops.


2012 ◽  
Vol 15 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Paula Judith Perez Espitia ◽  
Nilda de Fátima Ferreira Soares ◽  
Laura Costa Moreira Botti ◽  
Nathália Ramos de Melo ◽  
Olinto Liparini Pereira ◽  
...  

Rot and damage caused by post-harvest phytopathogenic fungi affect fruit quality. Essential oils (EO) are considered as an alternative to fungicides. Postharvest diseases of fruits may also be controlled by the bagging approach and the use of antimicrobial packaging. Based on the beneficial properties of EO and the concepts of bagging and antimicrobial packaging, this study aimed to develop sachets containing EO to be used as part of an antimicrobial packaging system. The activities of oregano, cinnamon and lemon grass EO were evaluated testing the sachets in vitro against the phytopathogenic fungi Alternaria alternata, Fusarium semitectum, Lasiodiplodia theobromae and Rhizopus stolonifer. The effects of the sachets on the microbiological and physicochemical parameters of post-harvest papaya were also evaluated. Both pure and sachet-incorporated EO showed antifungal activity in vitro against all tested fungi. For papaya, sachets containing cinnamon, oregano and lemon grass showed a significant reduction in the growth of mesophilic aerobic bacteria, yeasts and mould, with the cinnamon sachet causing the greatest reduction in microorganisms at the end of the storage time. Physicochemical parameters of papaya, such as weight loss, colour, firmness, total soluble solids/titratable acidity ratio and pH were not significantly altered by the presence of EO sachets, thus not affecting the natural ripening process of the papaya.


2020 ◽  
Vol 18 (1) ◽  
pp. 36
Author(s):  
ENNY WILLIANTI ◽  
THEODORA THEODORA ◽  
WAHYUNI DYAH PARMASARI

<p><strong>ABSTRACT</strong><strong></strong></p><p><strong> </strong></p><p><strong>Background</strong>: Betel leaf contains essential oils consisting of bethelphenol, kavikol, sesquiterpenes, hydroxycavikol, cavibetol, estragol, eugenol and carvacrol. Essential oils are antibacterial due to the presence of phenol compounds and their derivatives that can denature the bacterial cell proteins. Basil leaves contain compounds from essential oils, namely 1,8-cineole, ß-bisabolene, and methyl eugenol. These three ingredients are soluble to ethanol and can cause damage to the cell membranes of the Streptococcus mutans bacteria, which are members of the normal oral flora but can turn into pathogens if the balance of normal flora is disturbed. The aim of this study was to determine the difference in the activity of the antibacterial  of decoction betel leaf (piper betle L. ) with a decoction of basil leaves (ocimum sanctum) against growth of bacteria <em>Streptococcus mutans</em> (in vitro study).</p><p><strong>M</strong><strong>ethod:</strong> this observational research with disk diffusion techniques. This study observed and measured the diameter of the inhibitory zone in MHA formed by decoction of betel leaf (piper betle L) and basil leaf (ocimum sanctum) in units of millimeters (mm). There were 2 groups with 16 replications.</p><p><strong>R</strong><strong>esults</strong>: the results of the description test showed that the antibacterial activity of the betel leaf decoction and the highest decoction of basil leaf was 17 mm and the lowest was 15 mm, but the average antibacterial value of betel leaf decoction (15,81) greater than the average value of antibacterial activity of basil leaf (15.75). This is because there are chemicals contained in betel leaf similar as contained in basil leaf, namely essential oils.</p><p><strong>Conclusion</strong>: there is no difference in the antibacterial activity of decoction  betel leaf with decoction basil leaf against growth of bacteria <em>Streptococcus mutans</em>.</p><p><strong> </strong></p><p><strong>Keywords</strong>: Betel leaf decoction, basil leaf  decoction, Streptococcus <strong>mutans.      </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong>Abstrak</strong><strong></strong></p><p><strong> </strong></p><p><strong>Latar Belakang</strong>: Daun sirih mengandung minyak atsiri yang terdiri dari <em>bethelphenol, kavikol, </em>seskuiterpen, hydroxycavikol,cavibetol, estragol, eugenol dan carvacrol. Minyak atsiri bersifat antibakteri karena adanya senyawa phenol dan turunannya yang dapat mendenaturasi protein sel bakteri. Daun kemangi mengandung senyawa dari minyak atsiri yaitu <em>1,8-cineole</em>, <em>ß-bisabolene</em>, <em>metyl eugenol</em>. Ketiga bahan tersebut memiliki sifat larut terhadap etanol dan dapat menyebabkan kerusakan membran sel bakteri <em>streptococcus mutans</em> yang merupakan anggota flora normal rongga mulut tetapi dapat berubah menjadi patogen jika keseimbangan flora normal terganggu.Tujuan penelitian ini untuk mengetahui perbedaan aktivitas antibakteri rebusan daun sirih (<em>piper betle</em> L) dengan rebusan daun kemangi (<em>ocimum sanctum</em>) terhadap pertumbuhan bakteri <em>Streptococcus mutans</em> (penelitian in vitro).</p><p><strong>Metode</strong>: penelitian observasional ini dengan teknik difusi. Penelitian ini dilakukan dengan mengamati dan mengukur diameter zona hambat pada MHA yang dibentuk oleh rebusan daun sirih (<em>piper betle</em> L) dan daun kemangi (<em>ocimum sanctum</em>) dalam satuan milimeter (mm). Terdapat 2 kelompok dengan replikasi sebanyak 16.</p><p><strong>Hasil</strong> : Hasil uji deskripsi menunjukkan bahwa aktivitas antibakteri pada rebusan daun sirih maupun rebusan daun kemangi yang tertinggi sebesar 17 mm dan yang terendah 15 mm. Tetapi pada nilai rata-rata efektifitas antibakteri rebusan daun sirih (15,81) lebih besar daripada nilai rata-rata efektifitas antibakteri rebusan daun kemangi (15,75). Hal ini dikarenakan ada zat kimia yang terkandung dalam daun sirih mirip dengan yang terkandung dalam daun kemangi, yaitu minyak atsiri.</p><p><strong>Kesimpulan</strong> : tidak ada perbedaan aktivitas antibakteri rebusan daun sirih dengan rebusan daun kemangi terhadap pertumbuhan bakteri <em>Streptococcus </em><em>m</em><em>utans</em>.</p><p><strong> </strong></p><p><strong>Kata kunci</strong>:  rebusan daun sirih, rebusan daun kemangi<em>, Streptococcus mutans</em>.</p><p> </p><p>     </p>


2021 ◽  
Vol 28 (3) ◽  
pp. 411-427
Author(s):  
Romuald Górski ◽  
Hanna Dorna ◽  
Agnieszka Rosińska ◽  
Dorota Szopińska ◽  
Alina Kałużewicz

Abstract The aim of the studies was to investigate the effect of camel grass, lavender, patchouli, peppermint and tea tree essential oils, and their mixtures on the in vitro growth of pathogenic fungi Cladobotryum dendroides and Mycogone perniciosa, occurring in the cultivation of button mushroom (Agaricus bisporus). The mycelial growth of the tested pathogens was evaluated on PDA medium. Essential oils were added in three doses: 0.25; 0.5 and 1 mg·cm–3 of PDA medium. Camel grass and peppermint essential oils applied at the highest dose inhibited completely the in vitro growth of C. dendroides mycelium. Lavender oil used at the amount of 1 mg·cm–3 reduced the growth of the pathogen by 90 %. In the case of M. perniciosa the complete inhibition of the pathogen’s growth was observed after the addition of camel grass oil to PDA medium, irrespective of a dose, and lavender oil at the doses of 0.5 and 1 mg·cm–3. The efficacy of the tested mixtures against M. perniciosa was high. Generally, all mixtures of essential oils, irrespective of a dose, completely controlled the growth of the pathogen. The complete inhibition of the growth of C. dendroides was observed only on the medium with the addition of the mixture of camel grass and peppermint oils at the highest dose. The conducted research showed that natural essential oils due to their antifungal properties could be useful in the Integrated Disease Management for the protection of button mushroom against diseases. They could be an effective alternative to synthetic chemical fungicides.


2015 ◽  
Vol 7 (4) ◽  
pp. 412-416
Author(s):  
Mahboobeh NASSERI ◽  
Hossein AROUIEE ◽  
Shiva GOLMOHAMMADZADEH ◽  
Mahmoud Reza JAAFARI ◽  
Hossein NEAMATI

The present study aimed to determine minimum inhibitory concentration and minimum fungicidal concentration of the essential oil of Zataria multiflora to control Alternaria solani, Rhizoctonia solani, Rhizopus stolonifer, Aspergillus flavus, Aspergillus ochraceus and Aspergillus niger. The essential oil of Zataria multiflora was tested in vitro on PDA (malt extract agar medium) with eight concentrations: 0, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 ppm. This investigation followed the completely randomized design (CRD) with three replications. GC-MS evaluations of the essential oil revealed that thymol (35%), carvacrol (34%), cymene-p (9.89%), gamma-terpinene (5.88%) and alpha-pinene (4.22%) were the main compounds of Zataria multiflora oil. The results showed that the essential oil of Zataria multiflora has antifungal activity; the lowest inhibition (75%) was observed in the A. niger, while the highest inhibition (95.3%) was observed in A. solani. Minimum inhibitory concentration for A. solani, R. solani, R. stolonifer, A. flavus, A. ochraceus and A. niger was 200, 200, 200, 300, 300 and 200 ppm respectively. In addition, the present results showed that minimum fungicidal concentration (MFC) for A. solani, R. solani, R .stolonifer, A. niger and A.ochraceus was 600, 400, 300, 900 and 700 ppm respectively and none of the tested concentrations were fatal for A. flavus. A. solani and R. solani showed a strong sensitivity to Zataria multiflora essential oil at all concentrations. Findings of the current study suggest that essential oils of Zataria multiflora could be used for control of postharvest phytopathogenic fungi on fruits or vegetables.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Ismail Amri ◽  
Hamrouni Lamia ◽  
Samia Gargouri ◽  
Mohsen Hanana ◽  
Mariem Mahfoudhi ◽  
...  

Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly α-pinene (35.2%) and β-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.


2004 ◽  
Vol 59 (5-6) ◽  
pp. 368-372 ◽  
Author(s):  
Christos Bougatsos ◽  
Olipa Ngassapa ◽  
Deborah K. B. Runyoro ◽  
Ioanna B. Chinou

The chemical composition of the essential oils obtained from the aerial parts of Helichrysum cymosum and H. fulgidum, from Tanzania, were analyzed by GC and GC/MS. A total of sixty-five compounds, representing 92.4% and 88.2% of the two oils, respectively, were identified. trans-Caryophyllene, caryophyllene oxide, β-pinene, p-cymene, spathulenol and β- bourbonene were found to be the main components. Furthermore, the oils were tested against six gram (±) bacteria and three pathogenic fungi. It was found that the oil of H. fulgidum exhibited significant antimicrobial activity, while the oil of H. cymosum was not active at all.


Sign in / Sign up

Export Citation Format

Share Document