Recyclable surface-functionalized Fe3O4 particles for heavy oil viscosity reduction

Author(s):  
Ning Li ◽  
Hui Ke ◽  
Tongyu Wang ◽  
Shuqian Xia
2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


Author(s):  
Jie Fan ◽  
Zuqing He ◽  
Wei Pang ◽  
Daoming Fu ◽  
Hanxiu Peng ◽  
...  

AbstractMulti-gas assisted steam huff and puff process is a relatively new thermal recovery technology for offshore heavy oil reservoirs. Some blocks of Bohai oilfield have implemented multi-gas assisted steam huff and puff process. However, the development mechanism still requires further study. In this paper, high-temperature high-pressure (HTHP) PVT experiments and different huff and puff experiments of sand pack were carried out to reveal the enhanced production mechanism and evaluate the development effect of multi-gas assisted steam huff and puff process. The results indicated that viscosity reduction and thermal expansion still were the main development mechanism of multi-gas assisted steam huff and puff process. Specifically, CO2 easily dissolved in the heavy oil that made it mainly play the role of reducing oil viscosity, N2 was characteristics of small solubility and good expansibility, and it could improve formation pressure, increase steam sweep volume and even reduce the heat loss. Meanwhile, injecting multi-gas and steam could break the balance of heavy oil component that made the content of resin reduce and the content of saturates, aromatics and asphaltene increase so as to further reduce the viscosity of heavy oil. Compared with steam huff and puff process, multi-gas assisted steam huff and puff process increased the recovery by 2–5%. The optimal water–gas ratio and steam injection temperature were 4:6 and 300℃, respectively. The results suggested that multi-gas assisted steam huff and puff process would have wide application prospect for offshore heavy oil reservoirs.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1693-1698
Author(s):  
Yi Ding ◽  
Guo Wei Qin ◽  
Peng Liu ◽  
Zi Li Fan ◽  
Hong Wei Xiao ◽  
...  

Heat self-generated CO2 technique is proposed, which is focused on the problems of recovery difficulty, poor effect steam soaking and so on for heavy oil reservoirs. This technology is combining of steam flooding and gas flooding and so on. Its main mechanism is the application of steam heating blowing agent to generate a large volume of gases (including CO2, NH3, etc) in the formation. While some of these gases acting with the oil to reduce the oil viscosity, some form miscible flooding to reduce water interfacial tension, so as to achieve the purpose of enhancing oil recovery. An optimized selection of the heat blowing agents was performed. By comparison the difference before and after the reaction of blowing agent solution, the increase of alkaline is occurred after the reaction, and is helpful to reduce oil viscosity and lower interfacial tension, etc. Studies indicate that heat-generating CO2 flooding technology can get a maximum viscosity reduction rate of 76.7%, oil-water interfacial tension decreased by 54.77%, further improve oil recovery by 4.17% based on the steam drive, which shows a technical advantage toward conventional EOR method. The field experiments indicate that the technique can greatly improve the oil production, which will provide a powerful technical supporting for the efficient development of heavy oil.


2012 ◽  
Vol 616-618 ◽  
pp. 680-684
Author(s):  
Zheng Jun Long ◽  
Ya Rong Fu ◽  
Dong Qing Li ◽  
Li Xia Fu ◽  
Qian Fu

The high water content of heavy oil emulsions are O / W or W / O unstable estate, to solve the problem of heavy oil wells in the viscosity, after a large number of laboratory tests, a water-soluble drag reduction agent(DRA) with excellent drag reducing effect for high water heavy oil well is developed. The water-soluble DRA does not have combustible nature and solves also the problem of the security risk commonly used lower flash point viscosity reducing agent in paraffin oil well. The formulations and preparation method of the water-soluble drag reduction agent are introduced and the field applications are evaluated in this paper. The applications of more than 110 oil wells in Fifth Oil Production Plant in North China Oilfield have shown that the heavy oil viscosity reduction and drag reduction effects of water-soluble DRA are remarkable, and the hot wash cycle of oil well is prolonged.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Yu ◽  
Hongping Quan ◽  
Zhiyu Huang ◽  
Pengfei Li ◽  
Shihao Chang

Sign in / Sign up

Export Citation Format

Share Document