Study on Preparation of Water-Soluble DRA for High Water Heavy Oil Well and Field Application Evaluation

2012 ◽  
Vol 616-618 ◽  
pp. 680-684
Author(s):  
Zheng Jun Long ◽  
Ya Rong Fu ◽  
Dong Qing Li ◽  
Li Xia Fu ◽  
Qian Fu

The high water content of heavy oil emulsions are O / W or W / O unstable estate, to solve the problem of heavy oil wells in the viscosity, after a large number of laboratory tests, a water-soluble drag reduction agent(DRA) with excellent drag reducing effect for high water heavy oil well is developed. The water-soluble DRA does not have combustible nature and solves also the problem of the security risk commonly used lower flash point viscosity reducing agent in paraffin oil well. The formulations and preparation method of the water-soluble drag reduction agent are introduced and the field applications are evaluated in this paper. The applications of more than 110 oil wells in Fifth Oil Production Plant in North China Oilfield have shown that the heavy oil viscosity reduction and drag reduction effects of water-soluble DRA are remarkable, and the hot wash cycle of oil well is prolonged.

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 127
Author(s):  
Firdavs A. Aliev ◽  
Irek I. Mukhamatdinov ◽  
Sergey A. Sitnov ◽  
Mayya R. Ziganshina ◽  
Yaroslav V. Onishchenko ◽  
...  

The aquathermolysis process is widely considered to be one of the most promising approaches of in-situ upgrading of heavy oil. It is well known that introduction of metal ions speeds up the aquathermolysis reactions. There are several types of catalysts such as dispersed (heterogeneous), water-soluble and oil soluble catalysts, among which oil-soluble catalysts are attracting considerable interest in terms of efficiency and industrial scale implementation. However, the rock minerals of reservoir rocks behave like catalysts; their influence is small in contrast to the introduced metal ions. It is believed that catalytic the aquathermolysis process initiates with the destruction of C-S bonds, which are very heat-sensitive and behave like a trigger for the following reactions such as ring opening, hydrogenation, reforming, water–gas shift and desulfurization reactions. Hence, the asphaltenes are hydrocracked and the viscosity of heavy oil is reduced significantly. Application of different hydrogen donors in combination with catalysts (catalytic complexes) provides a synergetic effect on viscosity reduction. The use of catalytic complexes in pilot and field tests showed the heavy oil viscosity reduction, increase in the content of light hydrocarbons and decrease in heavy fractions, as well as sulfur content. Hence, the catalytic aquathermolysis process as a distinct process can be applied as a successful method to enhance oil recovery. The objective of this study is to review all previously published lab scale and pilot experimental data, various reaction schemes and field observations on the in-situ catalytic aquathermolysis process.


2019 ◽  
Vol 33 (10) ◽  
pp. 9736-9746 ◽  
Author(s):  
Juan Li ◽  
Yigang Liu ◽  
Qiuxia Wang ◽  
Yugui Han ◽  
Minggang Wang ◽  
...  

2009 ◽  
Author(s):  
Daniel Daparo ◽  
Luis Soliz ◽  
Eduardo Roberto Perez ◽  
Carlos Iver Vidal Saravia ◽  
Philip Duke Nguyen ◽  
...  

2019 ◽  
Vol 1402 ◽  
pp. 022029 ◽  
Author(s):  
M T Fathaddin ◽  
R H K Oetomo ◽  
N Hisanah
Keyword(s):  
Oil Well ◽  

2021 ◽  
Author(s):  
Xueqing Tang ◽  
Ruifeng Wang ◽  
Zhongliang Cheng ◽  
Hui Lu

Abstract Halfaya field in Iraq contains multiple vertically stacked oil and gas accumulations. The major oil horizons at depth of over 10,000 ft are under primary development. The main technical challenges include downdip heavy oil wells (as low as 14.56 °API) became watered-out and ceased flow due to depleted formation pressure. Heavy crude, with surface viscosities of above 10,000 cp, was too viscous to lift inefficiently. The operator applied high-pressure rich-gas/condensate to re-pressurize the dead wells and resumed production. The technical highlights are below: Laboratory studies confirmed that after condensate (45-52ºAPI) mixed with heavy oil, blended oil viscosity can cut by up to 90%; foamy oil formed to ease its flow to the surface during huff-n-puff process.In-situ gas/condensate injection and gas/condensate-lift can be applied in oil wells penetrating both upper high-pressure rich-gas/condensate zones and lower oil zones. High-pressure gas/condensate injected the oil zone, soaked, and then oil flowed from the annulus to allow large-volume well stream flow with minimal pressure drop. Gas/condensate from upper zones can lift the well stream, without additional artificial lift installation.Injection pressure and gas/condensate rate were optimized through optimal perforation interval and shot density to develop more condensate, e.g. initial condensate rate of 1,000 BOPD, for dilution of heavy oil.For multilateral wells, with several drain holes placed toward the bottom of producing interval, operating under gravity drainage or water coning, if longer injection and soaking process (e.g., 2 to 4 weeks), is adopted to broaden the diluted zone in heavy oil horizon, then additional recovery under better gravity-stabilized vertical (downward) drive and limited water coning can be achieved. Field data illustrate that this process can revive the dead wells, well production achieved approximately 3,000 BOPD under flowing wellhead pressure of 800 to 900 psig, with oil gain of over 3-fold compared with previous oil rate; water cut reduction from 30% to zero; better blended oil quality handled to medium crude; and saving artificial-lift cost. This process may be widely applied in the similar hydrocarbon reservoirs as a cost-effective technology in Middle East.


2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


Sign in / Sign up

Export Citation Format

Share Document