Coupling effect of power-law fluid properties and scaled fractal characteristics on flow through fractured media

2020 ◽  
Vol 559 ◽  
pp. 125073
Author(s):  
Jianting Zhu
2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2015 ◽  
Vol 39 (21) ◽  
pp. 6425-6437 ◽  
Author(s):  
J.A. Kolodziej ◽  
M. Mierzwiczak ◽  
M. Ciałkowski

2021 ◽  
Author(s):  
Mohammad Mahmud Hasan

In this thesis we undertake a theoretical study of the flow stability of a liquid film with power-law rheology down a heated incline. We develop and implement a mathematical model for the flow that captures the variation with temperature of the rheological aspect of the fluid. We carry out a linear stability analysis and obtain Orr-Sommerfeld type equations for the evolution of infintesimal perturbations imposed on the equilibrium flow. We obtain asymptotic solutions based on the assumption of perturbations of long wavelength and small variation in viscosity with respect to temperature. We investigate the critical conditions for the onset of instability and determine the effect of a non-Newtonian reheology and the dependence of the fluid properties on temperature


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ying Xu ◽  
Yuebin Wu ◽  
Qiang Sun

The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponentnbeing 0.891 and the rheological coefficientkbeing 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems.


2011 ◽  
Vol 217 (17) ◽  
pp. 7108-7116 ◽  
Author(s):  
S. Nadeem ◽  
Noreen Sher Akbar ◽  
Awatif A. Hendi ◽  
T. Hayat

2012 ◽  
Vol 198-199 ◽  
pp. 128-132
Author(s):  
Yong Ding ◽  
Fu Xin Yang ◽  
Jian Qiang Bao

The distribution of the speed and shear stress in power-law fluid with the laminar flow in the pipe were analyzed in this paper, then, the flow rate was calculated. Moreover, the stop pipe diameter was designed by calculating the balance of shear stress of power-law fluid in the pipe and the gravity of filling fluid. The conclusion: Ideal stop pipe diameter of power-law fluid is related to fluid properties, pressure and the acceleration of gravity.


1992 ◽  
Vol 59 (2) ◽  
pp. 431-437 ◽  
Author(s):  
M. G. Satish ◽  
J. Zhu

Finite difference solutions for a power-law fluid flow through an assemblage of solid particles at low Reynolds numbers are obtained using both the free-surface cell model and the zero-vorticity cell model. It is shown that, unlike in the case of power-law fluid flow past a single solid sphere, the flow drag decreases with decrease of flow behavior index, and that the degree of this reduction is more significant at low voidage. The results from this study are found to be in good agreement with the approximate solutions at slight pseudoplastic anomaly and the available experimental data. The results are presented in closed form and compare favorably with the variational bounds and the modified Blake-Kozeny equations. Numerical results show that a decrease in the flow behavior index leads to a slight increase in the mass transfer rate for an assemblage of solid spheres, but this increase is found to be small compared with that for a single solid sphere.


2005 ◽  
Vol 40 (3) ◽  
pp. 283-296 ◽  
Author(s):  
T. Staffan Lundstrom ◽  
Henrik Sundlof ◽  
J. Anders Holmberg

Sign in / Sign up

Export Citation Format

Share Document