Trimming the electrical properties on nanoscale YBa 2 Cu 3 O 7 − x constrictions by focus ion beam technique

2017 ◽  
Vol 540 ◽  
pp. 38-43 ◽  
Author(s):  
Simon K.H. Lam ◽  
Avi Bendavid ◽  
Jia Du
2013 ◽  
Vol 19 (S2) ◽  
pp. 888-889
Author(s):  
J.-G. Zheng

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2014 ◽  
Vol 783-786 ◽  
pp. 1476-1481 ◽  
Author(s):  
Henryk Paul

The layers near the interface of explosively welded plates were investigated by means of microscopic observations, mostly with the use of transmission electron microscopy (and Focus Ion Beam technique for the thin foils preparation) equipped with energy dispersive spectrometry. The metal compositions based on steels and Ti, Zr, Ta or Cu, were analyzed. The study was focused on the identification of the intermetallic phases inside the melted zones, the possible interdiffusion between the bonded metals and the changes in the dislocation structure.


2007 ◽  
Vol 84 (3) ◽  
pp. 524-527 ◽  
Author(s):  
H. Romanus ◽  
J. Schadewald ◽  
V. Cimalla ◽  
M. Niebelschütz ◽  
T. Machleidt ◽  
...  

2006 ◽  
Vol 921 ◽  
Author(s):  
Enzo Di Fabrizio ◽  
Filippo Romanato ◽  
Stefano Cabrini ◽  
Francesco Deangelis ◽  
Arum Amy Yu ◽  
...  

AbstractIn this article we will show three recent examples of combined strategies aiming at merging top-down and bottom-up approach for nanofabrication at nanoscale level. The first example shows the fabrication of nanogaps performed by Focus Ion Beam technique that have been used to measure the conductivity of few gold nanoparticles aggregates deposited by Dip Pen lithography. The second example deals with the parallel replica of high resolution master generated by Electron Beam lithography by means of an innovative lithographic process based on DNA supramolecular nano-stamping. The latter example proposes the possibility to generate, through radiation exposure, direct patterning of hybrid sol gel material doped with fluorescent molecules. The outline of the fabrication approaches and their scientific and technical perspective are discussed.


2010 ◽  
Vol 16 (S2) ◽  
pp. 174-175
Author(s):  
J Wojewoda-Budka ◽  
P Zieba ◽  
J Morgiel ◽  
N Sobczak ◽  
R Nowak

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Author(s):  
Randal E. Mulder ◽  
Sam Subramanian ◽  
Tony Chrastecky

Abstract Atomic force probing (AFP) uses very sharp tungsten tips (100nm in radius) which wear out rather quickly, even with the greater durability of tungsten as compared to silicon. This paper demonstrates how worn tips that no longer image and probe properly can be reconditioned using the focus ion beam (FIB) tool. The method works best for tips that are under approx. 750nm in diameter and are not bent. It works well for freshly manufactured tips that do not work properly due to mishandling or improper storage which allowed particulates/oxide to build up on the tip. The method also works well for fresh tips that have been worn down (or slightly bent) after several hours of scanning and probing. This method is straightforward and requires a minimal amount of time. Typically, four probe tips can be reconditioned in about 30 minutes on the FIB.


Author(s):  
U. Kerst ◽  
P. Sadewater ◽  
R. Schlangen ◽  
C. Boit ◽  
R. Leihkauf ◽  
...  

Abstract The feasibility of low-ohmic FIB contacts to silicon with a localized silicidation was presented at ISTFA 2004 [1]. We have systematically explored options in contacting diffusions with FIB metal depositions directly. A demonstration of a 200nm x 200nm contact on source/drain diffusion level is given. The remaining article focuses on the properties of FIB deposited contacts on differently doped n-type Silicon. After the ion beam assisted platinum deposition a silicide was formed using a forming current in two configurations. The electrical properties of the contacts are compared to furnace anneal standards. Parameters of Schottky-barriers and thermal effects of the formation current are studied with numerical simulation. TEM images and material analysis of the low ohmic contacts show a Pt-silicide formed on a silicon surface with no visible defects. The findings indicate which process parameters need a more detailed investigation in order to establish values for a practical process.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 328
Author(s):  
Manh-Tuan Vu ◽  
Gloria M. Monsalve-Bravo ◽  
Rijia Lin ◽  
Mengran Li ◽  
Suresh K. Bhatia ◽  
...  

Nanodiamonds (ND) have recently emerged as excellent candidates for various applications including membrane technology due to their nanoscale size, non-toxic nature, excellent mechanical and thermal properties, high surface areas and tuneable surface structures with functional groups. However, their non-porous structure and strong tendency to aggregate are hindering their potential in gas separation membrane applications. To overcome those issues, this study proposes an efficient approach by decorating the ND surface with polyethyleneimine (PEI) before embedding it into the polymer matrix to fabricate MMMs for CO2/N2 separation. Acting as both interfacial binder and gas carrier agent, the PEI layer enhances the polymer/filler interfacial interaction, minimising the agglomeration of ND in the polymer matrix, which is evidenced by the focus ion beam scanning electron microscopy (FIB-SEM). The incorporation of PEI into the membrane matrix effectively improves the CO2/N2 selectivity compared to the pristine polymer membranes. The improvement in CO2/N2 selectivity is also modelled by calculating the interfacial permeabilities with the Felske model using the gas permeabilities in the MMM. This study proposes a simple and effective modification method to address both the interface and gas selectivity in the application of nanoscale and non-porous fillers in gas separation membranes.


Sign in / Sign up

Export Citation Format

Share Document