scholarly journals Five-dimensional supersymmetric Chern–Simons action as a hypermultiplet quantum correction

2007 ◽  
Vol 644 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Sergei M. Kuzenko
2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jeongho Kim ◽  
Bora Moon

<p style='text-indent:20px;'>We present two types of the hydrodynamic limit of the nonlinear Schrödinger-Chern-Simons (SCS) system. We consider two different scalings of the SCS system and show that each SCS system asymptotically converges towards the compressible and incompressible Euler system, coupled with the Chern-Simons equations and Poisson equation respectively, as the scaled Planck constant converges to 0. Our method is based on the modulated energy estimate. In the case of compressible limit, we observe that the classical theory of relative entropy method can be applied to show the hydrodynamic limit, with the additional quantum correction term. On the other hand, for the incompressible limit, we directly estimate the modulated energy to derive the desired asymptotic convergence.</p>


1990 ◽  
Vol 05 (07) ◽  
pp. 487-494 ◽  
Author(s):  
EDWARD WITTEN

Certain aspects of the antifield-antibracket formalism for quantization of gauge theories are clarified. In particular, we discuss the geometrical meaning of the antifields, the geometric meaning of the antibracket, and the geometric meaning of the operator Δ that appears in the quantum correction to the master equation. Finally, we point out that the antibracket formalism contains most of the ingredients that would be needed to formulate an abstract Chern-Simons Lagrangian, as in open string field theory.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Andre Lukas ◽  
Juntao Wang

Abstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Damon J. Binder ◽  
Shai M. Chester ◽  
Max Jerdee ◽  
Silviu S. Pufu

Abstract We study the space of 3d $$ \mathcal{N} $$ N = 6 SCFTs by combining numerical bootstrap techniques with exact results derived using supersymmetric localization. First we derive the superconformal block decomposition of the four-point function of the stress tensor multiplet superconformal primary. We then use supersymmetric localization results for the $$ \mathcal{N} $$ N = 6 U(N)k × U(N + M)−k Chern-Simons-matter theories to determine two protected OPE coefficients for many values of N, M, k. These two exact inputs are combined with the numerical bootstrap to compute precise rigorous islands for a wide range of N, k at M = 0, so that we can non-perturbatively interpolate between SCFTs with M-theory duals at small k and string theory duals at large k. We also present evidence that the localization results for the U(1)2M × U (1 + M)−2M theory, which has a vector-like large-M limit dual to higher spin theory, saturates the bootstrap bounds for certain protected CFT data. The extremal functional allows us to then conjecturally reconstruct low-lying CFT data for this theory.


Sign in / Sign up

Export Citation Format

Share Document