scholarly journals Diamagnetic and paramagnetic phases in low-energy quantum chromodynamics

2021 ◽  
pp. 136384
Author(s):  
Christoph P. Hofmann
Author(s):  
Magdalena Skurzok ◽  
Abdollah Amirkhani ◽  
A. Baniahmad ◽  
M. Bazzi ◽  
D. Bosnar ◽  
...  

The excellent quality kaon beam provided by the DA\PhiΦNE collider of LNF-INFN (Italy) together with SIDDHARTA/SIDDHARTA-2 new experimental techniques, as very precise and fast-response X-ray detectors, allow to perform unprecedented measurements on light kaonic atoms crucial for a deeper understanding of the low-energy quantum chromodynamics (QCD) in the strangeness sector. In this paper an overview of the main results obtained by the SIDDHARTA collaboration, as well as the future plans related to the SIDDHARTA-2 experiment, are discussed.


2013 ◽  
Vol 28 (26) ◽  
pp. 1360022 ◽  
Author(s):  
WILLIBALD PLESSAS

Confinement and spontaneous breaking of chiral symmetry are assumed to generate the governing degrees of freedom of low-energy quantum chromodynamics. On this basis a relativistic constituent-quark model is constructed and formulated along an invariant mass operator within Poincaré-invariant quantum mechanics. The model is effectively applied to the spectroscopy of all known baryons of flavors u, d, s, c and b. The mass-operator eigenstates are furthermore tested with regard to the baryon electromagnetic and axial form factors. Through using the point form of relativistic quantum mechanics, these observables are obtained in a manifestly covariant manner. For all light and strange baryon ground states the electroweak structures are reproduced either in good agreement with phenomenology or, if no experimental data exist, in consistency with results available from lattice quantum chromodynamics. It is concluded that the relativistic constituent-quark model, relying on {QQQ} Fock states only, provides a universal framework for the description of low-energy baryons. The most important ingredients are spontaneous chiral-symmetry breaking and strict relativistic invariance.


1976 ◽  
Vol 114 (2) ◽  
pp. 199-236 ◽  
Author(s):  
John Kogut ◽  
D.K. Sinclair ◽  
Leonard Susskind

2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Pranay Gorantla ◽  
Ho Tat Lam

We study 3+1 dimensional SU(N)SU(N) Quantum Chromodynamics (QCD) with N_fNf degenerate quarks that have a spatially varying complex mass. It leads to a network of interfaces connected by interface junctions. We use anomaly inflow to constrain these defects. Based on the chiral Lagrangian and the conjectures on the interfaces, characterized by a spatially varying \thetaθ-parameter, we propose a low-energy description of such networks of interfaces. Interestingly, we observe that the operators in the effective field theories on the junctions can carry baryon charges, and their spin and isospin representations coincide with baryons. We also study defects, characterized by spatially varying coupling constants, in 2+1 dimensional Chern-Simons-matter theories and in a 3+1 dimensional real scalar theory.


2018 ◽  
Vol 27 (12) ◽  
pp. 1840003
Author(s):  
J. D. Vergados ◽  
D. Strottman

We discus the role of Quantum Chromodynamics (QCD) in low energy phenomena involving the color-spin symmetry of the quark model. We then combine it with orbital and isospin symmetry to obtain wave functions with the proper permutation symmetry, focusing on multi-quark systems.


2018 ◽  
Vol 20 (6) ◽  
pp. 063032
Author(s):  
L Lepori ◽  
A Celi ◽  
A Trombettoni ◽  
M Mannarelli

Sign in / Sign up

Export Citation Format

Share Document