scholarly journals Occasional comment: Fungal identification to species-level can be challenging

2021 ◽  
Vol 190 ◽  
pp. 112855
Author(s):  
Huzefa A. Raja ◽  
Nicholas H. Oberlies ◽  
Marc Stadler
2020 ◽  
Vol 8 (9) ◽  
pp. 1362
Author(s):  
Juan C. Gómez-Velásquez ◽  
Natalia Loaiza-Díaz ◽  
Gilma Norela Hernández ◽  
Nelson Lima ◽  
Ana C. Mesa-Arango

Identification of filamentous fungi by conventional phenotypic methods are time-consuming, and a correct identification at the species level is prone to errors. Therefore, a more accurate and faster time-to-results, and cost-effective technique, is required, such as the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). In this study, we describe the development of an in-house spectra library for the identification of filamentous fungi frequently isolated from patients with infections. An in-house spectra library was constructed using 14 reference strains grown in solid medium. Clinical isolates were identified either by the in-house spectra library or the Biotyper commercial library from Bruker Daltonics. Fungal identification was carried following the Biotyper’s established scores: ≤1.699: not reliably identified (NRI); 1.700–1.999: genus-level; ≥2.000: species-level. Clinical isolates were identified, with the in-house library, at species- and genus-level at 88.70% (55) and 3.22% (2), respectively. While 4.80% (3) was NRI and 3.22% (2) was discrepant concerning sequencing. On the contrary, identification up to species and genus-level with the commercial library was 44.44% (16) and 22.22% (8), respectively. NRI and the discrepancy was 30.55% (11) and 2.77% (1), respectively. For the reaming 26 isolates, 16 from Neoscytalidium dimidiatum and 10 from Sporothrix spp., respectively, the absence of spectrum and the specific spectra within the Sporothrix complex in the commercial library resulted in the inability to obtain an identification. In conclusion, the current results advocate the importance that each clinical microbiological laboratory needs to develop an ad hoc library associated with the MALDI-TOF MS fungal identification to overcome the limitations of the available commercial libraries.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Jenna Rychert ◽  
E. Sue Slechta ◽  
Adam P. Barker ◽  
Edwin Miranda ◽  
N. Esther Babady ◽  
...  

ABSTRACT Invasive fungal infections are an important cause of morbidity and mortality affecting primarily immunocompromised patients. While fungal identification to the species level is critical to providing appropriate therapy, it can be slow and laborious and often relies on subjective morphological criteria. The use of matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry has the potential to speed up and improve the accuracy of identification. In this multicenter study, we evaluated the accuracy of the Vitek MS v3.0 system in identifying 1,601 clinical mold isolates compared to identification by DNA sequence analysis and supported by morphological and phenotypic testing. Among the 1,519 isolates representing organisms in the v3.0 database, 91% (n = 1,387) were correctly identified to the species level. An additional 27 isolates (2%) were correctly identified to the genus level. Fifteen isolates were incorrectly identified, due to either a single incorrect identification (n = 13) or multiple identifications from different genera (n = 2). In those cases, when a single identification was provided that was not correct, the misidentification was within the same genus. The Vitek MS v3.0 was unable to identify 91 (6%) isolates, despite repeat testing. These isolates were distributed among all the genera. When considering all isolates tested, even those that were not represented in the database, the Vitek MS v3.0 provided a single correct identification 98% of the time. These findings demonstrate that the Vitek MS v3.0 system is highly accurate for the identification of common molds encountered in the clinical mycology laboratory.


2020 ◽  
Vol 58 (7) ◽  
pp. 946-957 ◽  
Author(s):  
Laura Heireman ◽  
Sofie Patteet ◽  
Sophia Steyaert

Abstract During the last decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the diagnosis of fungal infections. Recently, a new Conidia ID-fungi plate (IDFP) medium was introduced to facilitate growth and sampling of fungi. This study aimed to evaluate the IDFP for fungal MALDI-TOF MS identification by comparison with a standard fungal growth medium using two reference libraries. A total of 75 filamentous fungal isolates (including 32 dermatophytes) were inoculated on IDFP and Sabouraud-gentamicin-chloramphenicol (SGC) agar and identified by MALDI-TOF MS using formic acid/acetonitrile extraction. Both the commercially available Bruker library (version 2.0) and the public available MSI web application (version 2018) were applied. For 15% of the isolates, a faster growth was noticed on IDFP compared to SGC. IDFP enhanced the performance of fungal identification compared to SGC for both MSI (increase of 16% identifications to genus and 5% to species level) and Bruker library (increase of 22% identifications to genus and 8% to species level). In total, only 73% of the tested isolates were present in the Bruker library compared to 92% for MSI library. No significant difference (P = 0.46) in MALDI score between IDFP and SGC was observed for the MSI library, but scores were significantly (P = 0.03) higher for IDFP when using Bruker library, potentially explained by the prevention of agar contamination by using IDFP since the Bruker database was created from liquid media. IDFP is a promising alternative growth medium for MALDI-TOF MS fungal identification which would strongly benefit from optimizing the Bruker reference library.


Author(s):  
Nurrahmi Dewi Fajarningsih

Despite the fact that fungi are important sources of both bioactive compounds and mycotoxins, and that they are very ubiquitous in our environment, their species identification is hampered by incomplete and often unclear literature. Fungi identification is primarily based on their phenotypic and physiological characteristics. Nowadays, many molecular methods to identify fungal species have been developed. One of the methods considered as a new concept to rapidly and accurately identify unknown fungal sample is DNA Barcoding. This literature review will outline the use of DNA barcoding approach to rapidly identify fungal species and the use of ITS region that recently has been designated as primary DNA barcode for fungal kingdom. “DNA barcode” is a short, highly variable and standardized DNA region with approximately 700 nucleotides in length, which is used as a unique pattern to identify living things. Internal Transcribed Spacer (ITS) region of nuclear DNA (rDNA) has become the most sequenced region to identify fungal taxonomy at species level, and even within species. ITS region is a highly polymorphic non-coding region with enough taxonomic units. Therefore, it is able to separate sequences into species level. Even though ribosomal ITS as a universal barcode marker for fungi is still hampered by few limitations, the ITS will remain as the key choice for fungal identification. The search for alternative regions as DNA marker to improve fungal identification, especially in specific heredities, has already started. 


Author(s):  
I.M. Ritchie ◽  
C.C. Boswell ◽  
A.M. Badland

HERBACE DISSECTION is the process in which samples of herbage cut from trials are separated by hand into component species. Heavy reliance is placed on herbage dissection as an analytical tool ,in New Zealand, and in the four botanical analysis laboratories in the Research Division of the Ministry of Agriculture and Fisheries about 20 000 samples are analysed each year. In the laboratory a representative subsample is taken by a rigorous quartering procedure until approximately 400 pieces of herbage remain. Each leaf fragment is then identified to species level or groups of these as appropriate. The fractions are then dried and the composition calculated on a percentage dry weight basis. The accuracy of the analyses of these laboratories has been monitored by a system of interchanging herbage dissection samples between them. From this, the need to separate subsampling errors from problems of plant identification was, appreciated and some of this work is described here.


Sign in / Sign up

Export Citation Format

Share Document