scholarly journals Iridoid glucosides from the leaves of Vitex negundo var. cannabifolia

2022 ◽  
Vol 47 ◽  
pp. 56-62
Author(s):  
Jing Sun ◽  
Jiale Ma ◽  
Manman Li ◽  
Rongye Wang ◽  
Naiyun Liang ◽  
...  
Author(s):  
Mohd Faisal Khan ◽  
Poonam Arora ◽  
Mahaveer Dhobi

Background: Vitex negundo Linn. commonly known as five leave chase tree is an ethnobotanically important drug in traditional system of medicine. The plant is widely distributed in India, China and other Asian and American countries. Objective: The review aims at presenting comprehensive information with respect to ethnopharmacological rele-vance and recent findings on phytochemical and biological activities of Vitex negundo. Method: Literature was collected from various sources such as pubmed, scopus, science direct, and others. Results: Extracts and secondary metabolites of this plant, particularly those from roots and leaves, possess useful pharmacological activities such as anti-inflammatory, antitumor, antioxidant, antimicrobial, galactagogue, antigas-tric, antiflatulant, antiparasitic, analgesic, hepatoprotective and antihypertensive, some of which have been vali-dated scientifically. All parts of plant especially leave and roots contain a large number of bioactive phytoconstitu-ents including flavonoids, iridoids, lignans, volatile oil, terpenes, coumarins, phenolic and steroidal compounds which impart it multiple medicinal properties. Vitexin, isovitexin, viridifol, caffeic acid, chlorogenic acid and iso-chlorogenic acid are the main components. Conclusion: The review emphasises the medicinal importance of Vitex negundo and its bioactive constituents in traditional system of medicine.


2021 ◽  
pp. 1-9
Author(s):  
M. Manokari ◽  
S. Priyadharshini ◽  
Mahipal S. Shekhawat

Abstract Micropropagation techniques allow producing large numbers of clones of genetically identical plants. However, there is evidence of disorders in internal structures due to sophisticated in vitro conditions. Such variations are responsible for the mortality of plantlets in the field and cause huge loss to the tissue culture industry. Anatomical evaluation at different growth conditions allows for understanding structural repair of in vitro raised plantlets. Therefore, the present study was aimed to identify the structural changes that occurred in micropropagated plants of Vitex negundo under heterotrophic, photomixotrophic, and photoautotrophic conditions. To achieve this, structural variations were analyzed in the plantlets obtained from in vitro, greenhouse and field transferred stages using light microscopy. Underdeveloped dermal tissues, palisade cells, intercellular spaces, mechanical tissues, vascular bundles, and ground tissues were observed with the plants growing under in vitro conditions. The self-repairing of structural disorders and transitions in vegetative anatomy was observed during hardening under the greenhouse environment. Field transferred plantlets were characterized by well-developed internal anatomy. These findings showed that the micropropagated plantlets of V. negundo were well-adapted through a series of self-repairing the in vitro induced structural abnormalities at the subsequent stages of plant development.


2021 ◽  
pp. 101298
Author(s):  
Thi-Hoai-Thu Nguyen ◽  
Thi-Hong-Tuoi Do ◽  
Nguyen Tien Trung ◽  
Thi-Phuong Nguyen ◽  
Dang-Cam-Tu Phan ◽  
...  
Keyword(s):  

Molecules ◽  
2011 ◽  
Vol 16 (8) ◽  
pp. 6667-6676 ◽  
Author(s):  
Mohsen Zargar ◽  
Azizah Abdul Hamid ◽  
Fatima Abu Bakar ◽  
Mariana Nor Shamsudin ◽  
Kamyar Shameli ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1089
Author(s):  
Acharya Balkrishna ◽  
Akansha Rohela ◽  
Abhishek Kumar ◽  
Ashwani Kumar ◽  
Vedpriya Arya ◽  
...  

Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.


Sign in / Sign up

Export Citation Format

Share Document