scholarly journals Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora)

2015 ◽  
Vol 90 ◽  
pp. 14-22 ◽  
Author(s):  
Eshetu Janka ◽  
Oliver Körner ◽  
Eva Rosenqvist ◽  
Carl-Otto Ottosen
PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30167 ◽  
Author(s):  
Mia O. Hoogenboom ◽  
Douglas A. Campbell ◽  
Eric Beraud ◽  
Katrina DeZeeuw ◽  
Christine Ferrier-Pagès

2017 ◽  
Vol 114 (38) ◽  
pp. E8110-E8117 ◽  
Author(s):  
Jun Liu ◽  
Robert L. Last

Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded byAt4g02530) is required for growth acclimation ofArabidopsis thalianaplants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented thatmph2mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover,mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.


1990 ◽  
Vol 17 (5) ◽  
pp. 579 ◽  
Author(s):  
JP Krall ◽  
GE Edwards

The quantum yields of non-cyclic electron transport from photosystem II (determined from chlorophyll a fluorescence) and carbon dioxide assimilation were measured in vivo in representative species of the three subgroups of C4 plants (NADP-malic enzyme, NAD-malic enzyme and PEP-carboxykinase) over a series of intercellular CO2 concentrations (CI) at both 21% and 2% O2. The CO2 assimilation rate was independent of O2 concentration over the entire range of Ci (up to 500 μbar) in all three C4 subgroups. The quantum yield of PS II electron transport was similar, or only slightly greater, in 21% v. 2% O2 at all Ci values. In contrast, in the C3 species wheat there was a large O2 dependent increase in PS II quantum yield at low CO2, which reflects a high level of photorespiration. In the C4 plants, the relationship of the quantum yield of PS II electron transport to the quantum yield of CO2 fixation is linear suggesting that photochemical use of energy absorbed by PS II is tightly linked to CO2 fixation in C4 plants. This relationship is nearly identical in all three subgroups and may allow estimates of photosynthetic rates of C4 plants based on measurements of PS II photochemical efficiency. The results suggest that in C4 plants both the photoreduction of O2 and photorespiration are low, even at very limiting CO2 concentrations.


1991 ◽  
Vol 18 (4) ◽  
pp. 369 ◽  
Author(s):  
JP Krall ◽  
GE Edwards ◽  
MSB Ku

The quantum yields of electron transport from photosystem II (PSII) (Φe, determined from chlorophyll a fluorescence), and CO2 assimilation (ΦCO2, photosynthetic rate/light intensity) were measured simultaneously in vivo with representative species of Flaveria which show a progression in development between C3 and C4 photosynthesis and in reduction of photorespiration. These were F. pringlei (C3), F. sonorensis (C3-C4, but lacking a C4 cycle), F. floridana (C3-C4, with partially functional C4 cycle), F. brownii (C4-like) and F. bidentis (C4). The level of PSII activity with varying CI under 210 mbar O2 was very similar in all species. However, the progressive development of C4 characteristics among the species produced an increased efficiency in utilisation of PSII derived energy for CO2 assimilation under 210 mbar O2, due to reduced photorespiratory losses at low CO2 levels. In all species, when photorespiration was limited by low O2 (20 mbar), there was a linear or near linear relationship between the quantum yield of PSII v. the quantum yield of CO2 fixation with varying intercellular levels of CO2 (Ci) indicating that CO2 fixation in this case is linked to PSII activity. When switching from 20 to 210 mbar O2 at atmosphere levels of CO2, there was a similar decrease in the efficiency in utilising PSII activity for CO2 assimilation at different light intensities, but the degree of sensitivity to O2 progressively decreased among the species concomitant with the development of C4 photosynthesis. These results may help explain why there is an advantage to evolution of C4 photosynthesis in environments where Ci becomes limiting.


2007 ◽  
Vol 85 (6) ◽  
pp. 721-729 ◽  
Author(s):  
Tessa Pocock ◽  
P. V. Sane ◽  
S. Falk ◽  
N. P.A. Hüner

Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 °C resulted in comparable downward shifts in the temperature peak maxima (TM) for S2QB– charge pair recombination events, with minimal changes in S2QA– recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB– charge pair recombination events with no concomitant change in the activation energy for S2QA– recombination events. This resulted in a decrease in the ΔTM between S2QA– and S2QB– recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 °C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the ΔTM between S2QA– and S2QB– recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light.


Sign in / Sign up

Export Citation Format

Share Document