scholarly journals A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments

2017 ◽  
Vol 114 (38) ◽  
pp. E8110-E8117 ◽  
Author(s):  
Jun Liu ◽  
Robert L. Last

Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded byAt4g02530) is required for growth acclimation ofArabidopsis thalianaplants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented thatmph2mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover,mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.

2020 ◽  
Author(s):  
Marie Chazaux ◽  
Stefano Caffarri ◽  
Juliane Da Graça ◽  
Stephan Cuiné ◽  
Magali Floriani ◽  
...  

AbstractPhotosynthetic organisms require acclimation mechanisms to regulate photosynthesis in response to light conditions. Here, two mutant alleles of ACCLIMATION OF PHOTOSYNTHESIS TO THE ENVIRONMENT 1 (ape1) have been characterized in Chlamydomonas reinhardtii. The ape1 mutants are photosensitive and show PSII photoinhibition during high light acclimation or under high light stress. The ape1 mutants retain more PSII super-complexes and have changes to thylakoid stacking relative to control strains during photosynthetic growth at different light intensities. The APE1 protein is found in all oxygenic phototrophs and encodes a 25 kDa thylakoid protein that interacts with the Photosystem II core complex as monomers, dimers and supercomplexes. We propose a model where APE1 bound to PSII supercomplexes releases core complexes and promotes PSII heterogeneity influencing the stacking of Chlamydomonas thylakoids. APE1 is a regulator in light acclimation and its function is to reduce over-excitation of PSII centres and avoid PSII photoinhibition to increase the resilience of photosynthesis to high light.


Author(s):  
Inyoung Kim ◽  
Sang-Choon Lee ◽  
Eun-Ha Kim ◽  
Kiwhan Song ◽  
Tae-Jin Yang ◽  
...  

Fibrillin (FBN) is a plastid lipid-associated protein found in photosynthetic organisms from cyanobacteria to plants. In this study, 10 CsaFBN genes were identified in genomic DNA sequences of cucumber (Chinese long and Gy14) through database searches using the conserved domain of FBN and the 14 FBN genes of Arabidopsis. Phylogenetic analysis of CsaFBN protein sequences showed that there was no counterpart of Arabidopsis and rice FBN5 in the cucumber genome. FBN5 is essential for growth in Arabidopsis and rice; its absence in cucumber may be because of incomplete genome sequences or that another FBN carries out its functions. Among the 10 CsaFBN genes, CsaFBN1 and CsaFBN9 were the most divergent in terms of nucleotide sequences. Most of the CsaFBN genes were expressed in the leaf, stem, and fruit. CsaFBN4 showed the highest mRNA expression levels in various tissues, followed by CsaFBN6, CsaFBN1, and CsaFBN9. High-light stress combined with low temperature decreased photosynthetic efficiency and highly induced transcript levels of CsaFBN1, CsaFBN6, and CsaFBN11, which decreased after 24 h treatment. Transcript levels of the other seven genes were changed only slightly. This result suggests that CsaFBN1, CsaFBN6, and CsaFBN11 may be involved in photoprotection under high-light conditions at low temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qiansheng Li ◽  
Min Deng ◽  
Yanshi Xiong ◽  
Allen Coombes ◽  
Wei Zhao

Aeschynanthus longicaulisplants are understory plants in the forest, adapting to low light conditions in their native habitats. To observe the effects of the high irradiance on growth and physiology, plants were grown under two different light levels, PPFD 650 μmol·m–2·s–1and 150 μmol·m–2·s–1for 6 months. Plants under high irradiance had significantly thicker leaves with smaller leaf area, length, width, and perimeter compared to the plants grown under low irradiance. Under high irradiance, the leaf color turned yellowish and the total chlorophyll decreased from 5.081 mg·dm−2to 3.367 mg·dm−2. The anthocyanin content of high irradiance leaves was double that of those under low irradiance. The plants under high irradiance had significantly lower Amax(5.69 μmol·m–2·s–1) and LSP (367 μmol·m–2·s–1) and higher LCP (21.9 μmol·m–2·s–1). The chlorophyll fluorescence parameterFv/Fmwas significantly lower and NPQ was significantly higher in high irradiance plants. RLCs showed significantly lowerETRmax⁡andEkin plants under high irradiance. It can be concluded that the maximum PPFD of 650 μmol·m–2·s–1led to significant light stress and photoinhibition ofA. longicaulis.


2017 ◽  
Vol 68 (15) ◽  
pp. 4281-4293 ◽  
Author(s):  
Rikard Fristedt ◽  
Andrea Trotta ◽  
Marjaana Suorsa ◽  
Anders K Nilsson ◽  
Roberta Croce ◽  
...  

2020 ◽  
Vol 295 (43) ◽  
pp. 14546-14547
Author(s):  
Lijin Tian

Vascular plants combat the excess photon bombarding of high-light conditions with several protective mechanisms. Despite decades of extensive research, new regulatory mech-anisms for photoprotection may remain unknown. Kim et al. now report that the monomeric disordered form of photosystem II (PSII), which is present in higher abundance in the native thylakoid membrane in response to high light, possesses an energy-quenching capability superior to that of the multimeric ordered phase, suggesting a new shielding strategy against high-light stress by altering the macro-organization of PSII supercomplexes.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Piotr Salachna ◽  
Rafał Piechocki

Hardy ferns form a group of attractive garden perennials with an unknown response to abiotic stresses. The aim of this study was to evaluate the tolerance of three species of ferns of Dryopteris genus (D. affinis, D. atrata and D. filix-mas) and one cultivar (D. filix-mas cv. “Linearis-Polydactylon”) to salinity and light stress. The plants were grown in full sun and shade and watered with 50 and 100 mM dm−3 NaCl solution. All taxa treated with 100 mM NaCl responded with reduced height, leaf greenness index and fresh weight of the above-ground part. In D. affinis and D. atrata salinity caused leaf damage manifested by necrotic spots, which was not observed in the other two taxa. The effect of NaCl depended on light treatments and individual taxon. D. affinis and D. atrata were more tolerant to salinity when growing under shade. Contrary to that, D. filix-mas cv. “Linearis-Polydactylon” seemed to show significantly greater tolerance to this stress under full sun. Salt-treated D. filix-mas cv. “Linearis-Polydactylon” plants accumulated enhanced amounts of K+ in the leaves, which might be associated with the taxon’s tolerance to salinity. Among the investigated genotypes, D. filix-mas cv. “Linearis-Polydactylon” seemed the most and D. affinis and D. atrata the least tolerant to salinity and light stress.


2021 ◽  
Vol 22 (8) ◽  
pp. 4021
Author(s):  
Monika Kula-Maximenko ◽  
Kamil Jan Zieliński ◽  
Ireneusz Ślesak

Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


2016 ◽  
Vol 22 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Gábor Steinbach ◽  
Radek Kaňa

AbstractPhotosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (throughTime Controlleroffered by Olympus orExperiment Designeroffered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with theCell⊕Findersoftware was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) theCell⊕Findersoftware with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser.Cell⊕Findercan be downloaded fromhttp://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity inSynechocystissp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.


Sign in / Sign up

Export Citation Format

Share Document