Characterization of pC7 from Lactobacillus paraplantarum C7 derived from Kimchi and development of lactic acid bacteria–Escherichia coli shuttle vector

Plasmid ◽  
2004 ◽  
Vol 52 (2) ◽  
pp. 84-88 ◽  
Author(s):  
Woo Jung Park ◽  
Kwan Hoon Lee ◽  
Jung Min Lee ◽  
Hyong Joo Lee ◽  
Jeong Hwan Kim ◽  
...  
Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1726-1737 ◽  
Author(s):  
Takaomi Wada ◽  
Masafumi Noda ◽  
Fumi Kashiwabara ◽  
Hyung Joon Jeon ◽  
Ayano Shirakawa ◽  
...  

In this study we isolated over 250 lactic acid bacteria (LAB) candidates from fruit, flowers, vegetables and a fermented food to generate an LAB library. One strain, designated 925A, isolated from kimchi (a traditional Korean fermented dish made from Chinese cabbage) produced a novel type of bacteriocin, brevicin 925A, which is effective against certain LAB, including strains of Lactobacillus, Enterococcus, Streptococcus, Bacillus and Listeria. Strain 925A, identified as Lactobacillus brevis, harboured at least four plasmids and we determined the entire nucleotide sequence of each one. The four plasmids were designated pLB925A01–04, and have molecular sizes of 1815, 3524, 8881 and 65 037 bp, respectively. We obtained bacteriocin non-producing derivatives by treatment of strain 925A with novobiocin. All of these derivatives, which were susceptible to their own antibacterial product, lost the largest plasmid, pLB925A04, suggesting that the genes for bacteriocin biosynthesis (breB and breC) and immunity (breE) are located on pLB925A04. The partial amino acid sequence of purified brevicin 925A and sequence analysis of pLB925A04 showed that breB is the structural gene for brevicin 925A. We constructed a shuttle vector (pLES003, 6134 bp) that can replicate in both Escherichia coli and LAB such as Lactobacillus plantarum, Lb. brevis, Lactobacillus helveticus, Lactobacillus hilgardii and Enterococcus hirae. To determine the function of gene breE, which displays no significant similarity to any other sequences in the blast search database, the gene was inserted into pLES003. A pLB925A04-cured derivative transformed with pLES003 carrying breE acquired immunity to brevicin 925A, suggesting that breE encodes an immunity protein.


Author(s):  
ROSALINA YULIANA AYEN ◽  
ENDANG KUSDIYANTINI ◽  
SRI PUJIYANTO

Objective: This research aimed to isolate, determine the characteristics of lactic acid bacteria (LAB) of Sui Wu’u from Bajawa, Nusa Tenggara Timur and identify LAB using 16S rRNA potential as antimicrobial activity against pathogenic bacteria. Methods: Sui Wu’u which has been stored for 6 months was obtained from Bajawa district, inoculated on de Man Rogosa-Sharpe Agar (Merck) + 0.5% CaCO3, purification of LAB, characterization of selected isolates, biochemical test, tolerance test for pH, viability to test temperature, and content NaCl, determination of antimicrobial action by the agar well disk diffusion method using antibiotic (Amoxicillin) as a control and as indicator bacteria (Staphylococcus aureus and Escherichia coli) and isolation of genomic 16S rRNA; molecular identification. Results: Based on research results obtained five isolates of LAB, Gram staining the LAB isolated from Sui Wu’u showed that the isolated bacteria (bacilli and coccus) are Gram-positive, catalase-negative and the isolates have tolerance of viability at temperatures of 10°C, 45°C, and 50°C and to salinitas of 4% and 6.5%. The inhibitory zone LAB isolates (2PKT) against E. coli bacteria (20 mm) and S. aureus (12 mm), and (2PKB) against E. coli bacteria (17 mm) and S. aureus (10 mm). The two selected isolates were identified as Lactobacillus fermentum strain HB bacteria with 100% identification value and 98.93% query cover and L. fermentum strain HT with 100% identification value and 99.23% query cover. Conclusion: L. fermentum from Sui Wu’u has antibacterial activity against Staphylococcus aureus and Escherichia coli.


2011 ◽  
Vol 63 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Natasa Jokovic ◽  
Maja Vukasinovic ◽  
Katarina Veljovic ◽  
Maja Tolinacki ◽  
L. Topisirovic

Two hundred thirteen non-starter lactic acid bacteria isolated from Radan cheese during ripening were identified with both a classical biochemical test and rep-PCR with (GTG)5 primer. For most isolates, which belong to the Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Enterococcus faecium, a phenotypic identification was in good agreement with rep-PCR identification. Lactococeus lactis subsp. lactis, Enterococcus faecium and subspecies from the Lenconostoc mesenteroides group were the dominant population of lactic acid bacteria in cheese until 10 days of ripening and only one Streptococcus thermophilus strain was isolated from the 5-day-old cheese sample. As ripening progressed, Lactobacillus plantarum became the predominant species together with the group of heterofermentative species of lactobacilli that could not be precisely identified with rep-PCR.


Plasmid ◽  
1992 ◽  
Vol 28 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Daniel K.Y. Solaiman ◽  
George A. Somkuti ◽  
Dennis H. Steinberg

2021 ◽  
Vol 709 (1) ◽  
pp. 012020
Author(s):  
Evy Rossi ◽  
Akhyar Ali ◽  
Raswen Efendi ◽  
Fajar Restuhadi ◽  
Yelmira Zalfiatri ◽  
...  

2012 ◽  
Vol 58 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Jie Yu ◽  
Wa Gao ◽  
Manjun Qing ◽  
Zhihong Sun ◽  
Weihong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document