scholarly journals Lactic acid bacteria biofilms and their ability to mitigate Escherichia coli O157:H7 surface colonization

Author(s):  
L Cisneros ◽  
N Cattelan ◽  
MI Villalba ◽  
C. Rodriguez ◽  
DO Serra ◽  
...  
2018 ◽  
Vol 99 (4) ◽  
pp. 1548-1553 ◽  
Author(s):  
Angela Laury-Shaw ◽  
Sara Elizabeth Gragg ◽  
Alejandro Echeverry ◽  
Mindy M Brashears

2001 ◽  
Vol 64 (8) ◽  
pp. 1145-1150 ◽  
Author(s):  
NAVEEN CHIKTHIMMAH ◽  
RAMASWAMY C. ANANTHESWARAN ◽  
ROBERT F. ROBERTS ◽  
EDWARD W. MILLS ◽  
STEPHEN J. KNABEL

Due to undesirable quality changes, Lebanon bologna is often processed at temperatures that do not exceed 48.8°C (120°F). Therefore, it is important to study parameters that influence the destruction of Escherichia coli O157:H7 in Lebanon bologna. The objective of the present study was to determine the influence of curing salts (NaCl and NaNO2) on the destruction of E. coli O157:H7 during Lebanon bologna processing. Fermentation to pH 4.7 at 37.7°C reduced populations of E. coli O157:H7 by approximately 0.3 log10, either in the presence or absence of curing salts. Subsequent destruction of E. coli O157:H7 during heating of fermented product to 46.1°C was significantly reduced by the presence of 3.5% NaCl and 156 ppm NaNO2, compared to product without curing salts (P < 0.01). The presence of a higher level of NaCl (5%) in Lebanon bologna inhibited the growth of lactic acid bacteria (LAB), which yielded product with higher pH (~5.0) and significantly reduced the destruction of E. coli O157:H7 even further (P < 0.05). Lower concentrations of NaCl (0, 2.5%) yielded Lebanon bologna with higher LAB counts and lower pHs, compared to product with 5% NaCl. When lactic acid was used to adjust pH in product containing different levels of NaCl, it was determined that low pH was directly influencing destruction of E. coli O157:H7, not NaCl concentration.


2003 ◽  
Vol 66 (3) ◽  
pp. 355-363 ◽  
Author(s):  
M. M. BRASHEARS ◽  
D. JARONI ◽  
J. TRIMBLE

Lactic acid bacteria (LAB) were selected on the basis of characteristics indicating that they would be good candidates for a competitive exclusion product (CEP) that would inhibit Escherichia coli O157:H7 in the intestinal tract of live cattle. Fecal samples from cattle that were culture negative for E. coli O157:H7 were collected. LAB were isolated from cattle feces by repeated plating on deMan Rogosa Sharpe agar and lactobacillus selection agar. Six hundred eighty-six pure colonies were isolated, and an agar spot test was used to test each isolate for its inhibition of a four-strain mixture of E. coli O157:H7. Three hundred fifty-five isolates (52%) showed significant inhibition. Seventy-five isolates showing maximum inhibition were screened for acid and bile tolerance. Most isolates were tolerant of acid at pH levels of 2, 4, 5, and 7 and at bile levels of 0.05, 0.15, and 0.3% (oxgall) and were subsequently identified with the API system. Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus delbreukii, Lactobacillus salivarius, Lactobacillus brevis, Lactobacillus cellobiosus, Leuconostoc spp., and Pediococcus acidilactici were the most commonly identified LAB. Nineteen strains were further tested for antibiotic resistance and inhibition of E. coli O157:H7 in manure and rumen fluid. Four of these 19 strains showed susceptibility to all of the antibiotics, 13 significantly reduced E. coli counts in manure, and 15 significantly reduced E. coli counts in rumen fluid (P < 0.05) during at least one of the sampling periods. One of the strains, M35, was selected as the best candidate for a CEP. A 16S rRNA sequence analysis of M35 revealed its close homology to Lactobacillus crispatus. The CEP developed will be used in cattle-feeding trials.


2010 ◽  
Vol 73 (2) ◽  
pp. 358-361 ◽  
Author(s):  
S. E. GRAGG ◽  
M. M. BRASHEARS

A 12-day shelf life study was conducted at 7°C to determine whether Escherichia coli O157:H7 on spinach can be controlled effectively by selected strains of lactic acid bacteria (LAB) alone or in combination with chlorine as a multihurdle intervention. The multihurdle intervention consisted of both LAB and chlorine and was applied to spinach as a rinse and evaluated in comparison to LAB alone and chlorine and water rinses. Reductions achieved by all treatments also were compared with those observed for an inoculated control. The spinach was inoculated by submersion in a solution containing an E. coli O157:H7 cocktail at 1.0 × 106 CFU/ml. LAB were applied postharvest at a concentration of 2.0 × 108 CFU/ml, and 200 ppm of chlorine was used for the chlorine rinse. All spinach samples were packaged in commercial packaging, held in a retail display case, and tested for E. coli O157:H7 on days 0, 1, 3, 6, 9, and 12 using the Neo-Grid filtration system and CHROMagar. Survival of LAB throughout the shelf life also was determined. Significant reductions in pathogen populations were achieved by water (P < 0.0008), LAB (P < 0.0001), chlorine (P < 0.0001), and multihurdle (P < 0.0001) treatments when compared with controls. The multihurdle treatment produced the greatest reduction from control populations, a reduction of 1.91 log CFU/ml. This reduction was significantly greater than that achieved with water (P < 0.0001), LAB (P = 0.0025), and chlorine (P < 0.0001) alone, indicating that the application of chlorine and LAB is most effective as a combination treatment. The results obtained from this study indicate that the industry standard chlorine wash may be more effective when applied in combination with LAB.


2005 ◽  
Vol 68 (8) ◽  
pp. 1587-1592 ◽  
Author(s):  
L. SMITH ◽  
J. E. MANN ◽  
K. HARRIS ◽  
M. F. MILLER ◽  
M. M. BRASHEARS

Studies were conducted to determine whether four strains of lactic acid bacteria (LAB) inhibited Escherichia coli O157: H7 and Salmonella in ground beef at 5°C and whether these bacteria had an impact on the sensory properties of the beef. The LAB consisted of frozen concentrated cultures of four Lactobacillus strains, and a cocktail mixture of streptomycin-resistant E. coli O157:H7 and Salmonella were used as pathogens. Individual LAB isolates at 107 CFU/ml were added to tryptic soy broth containing a pathogen concentration of 105 CFU/ml. Samples were stored at 5°C, and pathogen populations were determined on days 0, 4, 8, and 12. After 4 days of storage, there were significant differences in numbers of both pathogens exposed to LAB isolates NP 35 and NP 3. After 8 and 12 days of storage, all LAB reduced populations of both pathogens by an average of 3 to 5 log cycles. A second study was conducted in vacuum-packaged fresh ground beef. The individual LAB isolates resulted in an average difference of 1.5 log cycles of E. coli O157:H7 after 12 days of storage, and Salmonella populations were reduced by an average of 3 log cycles. Following this study, a mixed concentrated culture was prepared from all four LAB and added to ground beef inoculated with pathogen at 108 CFU/g. After 3 days of storage, the mixed culture resulted in a 2.0-log reduction in E. coli O157:H7 compared with the control, whereas after 5 days of storage, a 3-log reduction was noted. Salmonella was reduced to nondetectable levels after day 5. Sensory studies on noninoculated samples that contained LAB indicated that there were no adverse effects of LAB on the sensory properties of the ground beef. This study indicates that adding LAB to raw ground beef stored at refrigeration temperatures may be an important intervention for controlling foodborne pathogens.


Sign in / Sign up

Export Citation Format

Share Document