Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response

Plant Gene ◽  
2018 ◽  
Vol 13 ◽  
pp. 25-35 ◽  
Author(s):  
Archana Singh ◽  
Onkar Nath ◽  
Sujata Singh ◽  
Sumit Kumar ◽  
Indrakant Kumar Singh
Plant Gene ◽  
2020 ◽  
Vol 23 ◽  
pp. 100231
Author(s):  
Sumit Kumar Mishra ◽  
Anuj Kumar Poonia ◽  
Reeku Chaudhary ◽  
Vinay K. Baranwal ◽  
Deepanksha Arora ◽  
...  

2021 ◽  
Author(s):  
Yuan Yuan ◽  
Xiping Yang ◽  
Mengfang Feng ◽  
Hongyan Ding ◽  
Khan Muhammad Tahir ◽  
...  

Abstract Background: Sugarcane (Saccharum) is the most important sugar crop in the world. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. Results: A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genome and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which MYB43, MYB53, MYB65, MYB78, and MYB99 were validated by qPCR. Allelic expression dominance in the stem was more significant than that in the leaf, implying the differential expression of alleles may be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. Conclusions: A Genome-wide expression analysis demonstrated that SsMYB genes were involved in stem development and stress response. This study largely contributed to understanding the extent to which MYB transcription factors investigate regulatory mechanisms and functional divergence in sugarcane.


2021 ◽  
Vol 22 (16) ◽  
pp. 8793
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Ting Zhang ◽  
Xinran Chong ◽  
...  

The family of B-box (BBX) transcription factors contains one or two B-BOX domains and sometimes also features a highly conserved CCT domain, which plays important roles in plant growth, development and stress response. Nevertheless, no systematic study of the BBX gene family in Iris germanica L. has been undertaken. In this study, a set of six BBX TF family genes from I. germanica was identified based on transcriptomic sequences, and clustered into three clades according to phylogenetic analysis. A transient expression analysis revealed that all six BBX proteins were localized in the nucleus. A yeast one-hybrid assay demonstrated that IgBBX3 has transactivational activity, while IgBBX1, IgBBX2, IgBBX4, and IgBBX5 have no transcriptional activation ability. The transcript abundance of IgBBXs in different tissues was divided into two major groups. The expression of IgBBX1, IgBBX2, IgBBX3 and IgBBX5 was higher in leaves, whereas IgBBX4 and IgBBX6 was higher in roots. The stress response patterns of six IgBBX were detected under phytohormone treatments and abiotic stresses. The results of this study lay the basis for further research on the functions of BBX gene family members in plant hormone and stress responses, which will promote their application in I. germanica breeding.


2020 ◽  
Author(s):  
Fan Yang ◽  
Fushuang Dong ◽  
Yongwei Liu ◽  
Jianfang Chai ◽  
He Zhao ◽  
...  

Abstract Plant calmodulin-binding transcription activator (CAMTA) proteins play important roles in hormone signal transduction, developmental regulation, and environmental stress tolerance. However, in wheat, the CAMTA gene family has not been systematically characterized. In this work, 15 wheat CAMTA genes were identified using a genome-wide search method. Their chromosome location, physicochemical properties, subcellular localization, gene structure, protein domain, and promoter cis-elements were systematically analyzed. Phylogenetic analysis classified the TaCAMTA genes into three groups (groups A, B, and C), numbered 7, 6, and 2, respectively. The results showed that most TaCAMTA genes contained stress-related cis-elements. Finally, to obtain tissue-specific and stress-responsive candidates, the expression profiles of the TaCAMTAs in various tissues and under biotic and abiotic stresses were investigated. Tissue-specific expression analysis showed that all of the TaCAMTA genes were expressed in multiple tissues, suggesting that the wheat CAMTA genes may play important roles in growth and development. Under abiotic stress, TaCAMTA1, 3, and 6 were up-regulated after drought treatment, while the expression levels of TaCAMTA1 and 3 were induced after cold treatment, indicating that they may be involved in drought and cold stress response. This work systematically identified the CAMTA gene family in wheat at the whole-genome-wide level, providing important candidates for further functional analysis in developmental regulation and the stress response in wheat.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


Sign in / Sign up

Export Citation Format

Share Document