scholarly journals Corrigendum to “New mechanism of neuroinflflammation in Alzheimer's disease: The activation of NLRP3 inflflammasome mediated by gut microbiota” [Progress in Neuropsychopharmacology & Biological Psychiatry 100 (2020) 109884].

Author(s):  
Chenyang Han
2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 779
Author(s):  
Pradeep K. Shukla ◽  
David F. Delotterie ◽  
Jianfeng Xiao ◽  
Joseph F. Pierre ◽  
RadhaKrishna Rao ◽  
...  

Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive decline, is a major cause of death and disability among the older population. Despite decades of scientific research, the underlying etiological triggers are unknown. Recent studies suggested that gut microbiota can influence AD progression; however, potential mechanisms linking the gut microbiota with AD pathogenesis remain obscure. In the present study, we provided a potential mechanistic link between dysbiotic gut microbiota and neuroinflammation associated with AD progression. Using a mouse model of AD, we discovered that unfavorable gut microbiota are correlated with abnormally elevated expression of gut NLRP3 and lead to peripheral inflammasome activation, which in turn exacerbates AD-associated neuroinflammation. To this end, we observe significantly altered gut microbiota compositions in young and old 5xFAD mice compared to age-matched non-transgenic mice. Moreover, 5xFAD mice demonstrated compromised gut barrier function as evident from the loss of tight junction and adherens junction proteins compared to non-transgenic mice. Concurrently, we observed increased expression of NLRP3 inflammasome and IL-1β production in the 5xFAD gut. Consistent with our hypothesis, increased gut–microbial–inflammasome activation is positively correlated with enhanced astrogliosis and microglial activation, along with higher expression of NLRP3 inflammasome and IL-1β production in the brains of 5xFAD mice. These data indicate that the elevated expression of gut–microbial–inflammasome components may be an important trigger for subsequent downstream activation of inflammatory and potentially cytotoxic mediators, and gastrointestinal NLRP3 may promote NLRP3 inflammasome-mediated neuroinflammation. Thus, modulation of the gut microbiota may be a potential strategy for the treatment of AD-related neurological disorders in genetically susceptible hosts.


2021 ◽  
Vol 68 ◽  
pp. 101317
Author(s):  
Xiao-hang Qian ◽  
Xiao-xuan Song ◽  
Xiao-li Liu ◽  
Sheng-di Chen ◽  
Hui-dong Tang

2021 ◽  
pp. 1-20
Author(s):  
Daniel Cuervo-Zanatta ◽  
Jaime Garcia-Mena ◽  
Claudia Perez-Cruz

Background: Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer’s disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. Objective: The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. Methods: Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. Results: We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. Conclusion: This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.


2019 ◽  
Vol 15 (10) ◽  
pp. 1357-1366 ◽  
Author(s):  
Binyin Li ◽  
Yixi He ◽  
Jianfang Ma ◽  
Pei Huang ◽  
Juanjuan Du ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nesrine S. El Sayed ◽  
Esraa A. Kandil ◽  
Mamdooh H. Ghoneum

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.


2018 ◽  
Vol 63 (4) ◽  
pp. 1337-1346 ◽  
Author(s):  
Zhen-Qian Zhuang ◽  
Lin-Lin Shen ◽  
Wei-Wei Li ◽  
Xue Fu ◽  
Fan Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document