Molecular recognition between 4′-(4-biphenylyl)-4,2′:6′,4″-terpyridine domains in the assembly of d9 and d10 metal ion-containing one-dimensional coordination polymers

Polyhedron ◽  
2013 ◽  
Vol 60 ◽  
pp. 120-129 ◽  
Author(s):  
Edwin C. Constable ◽  
Catherine E. Housecroft ◽  
Markus Neuburger ◽  
Jonas Schönle ◽  
Srboljub Vujovic ◽  
...  
CrystEngComm ◽  
2019 ◽  
Vol 21 (16) ◽  
pp. 2691-2701 ◽  
Author(s):  
Zahra Nezhadali Baghan ◽  
Alireza Salimi ◽  
Hossein Eshtiagh-Hosseini ◽  
Allen G. Oliver

The crystal structures of four new d10-metal halide coordination polymers are determined as one-dimensional (1D) zigzag chains which are in contact with each other by C/N–H⋯X (X = Cl, Br, I) hydrogen bonds.


2021 ◽  
Author(s):  
Claire Deville ◽  
Henrik Særkjær Jeppesen ◽  
Vickie McKee ◽  
Nina Lock

Controlled bottom-up synthesis of amorphous coordination polymers with tailored metal coordination is a research field in its infancy. In this study, synthesis control was achieved to selectively prepare one-dimensional (1D)...


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


Author(s):  
Benjamin Mallada ◽  
Piotr Błoński ◽  
Rostislav Langer ◽  
Pavel Jelínek ◽  
Michal Otyepka ◽  
...  

2021 ◽  
Author(s):  
Aoi Hara ◽  
Sotaro Kusumoto ◽  
Yoshihiro Sekine ◽  
Jack Harrowfield ◽  
Yang Kim ◽  
...  

Mn(III) complexes with the non-chiral ligands, (E)-N-(2-((2-aminobenzylidene)amino)-2-methylpropyl)-5-X-2-hydroxybenzamide (HLX, X = H, Cl, Br, and I), crystallise as chiral conglomerates containing amide oxygen-bridged one-dimensional coordination polymers that exhibit weak ferromagnetism. The...


Sign in / Sign up

Export Citation Format

Share Document