Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures

Polymer ◽  
2008 ◽  
Vol 49 (17) ◽  
pp. 3816-3825 ◽  
Author(s):  
Hui Zhang ◽  
Long-Cheng Tang ◽  
Zhong Zhang ◽  
Klaus Friedrich ◽  
Stephan Sprenger
Desalination ◽  
2021 ◽  
Vol 499 ◽  
pp. 114832
Author(s):  
Yuanlu Xu ◽  
Yi Yang ◽  
Xinfei Fan ◽  
Zhijian Liu ◽  
Yongxin Song ◽  
...  

2014 ◽  
Vol 47 (15) ◽  
pp. 5174-5185 ◽  
Author(s):  
Elena Miloskovska ◽  
Michael Ryan Hansen ◽  
Cornelius Friedrich ◽  
Denka Hristova-Bogaerds ◽  
Martin van Duin ◽  
...  

2015 ◽  
Vol 31 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Aline Oliveira-Ogliari ◽  
Fabrício M. Collares ◽  
Victor P. Feitosa ◽  
Salvatore Sauro ◽  
Fabrício A. Ogliari ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58816-58825 ◽  
Author(s):  
Bharat P. Kapgate ◽  
Chayan Das

The strong CR/in situ silica interaction causes filler accumulation at the interphase and enhances the compatibility and reinforcement in the NR/CR blend.


2003 ◽  
Vol 76 (7) ◽  
pp. 234-239 ◽  
Author(s):  
Kiyoshi SUNADA ◽  
Hiroki TAKESHITA ◽  
Masamitsu MIYA ◽  
Tsukasa NAKAMURA ◽  
Katsuhiko TAKENAKA ◽  
...  

2015 ◽  
Vol 33 (3) ◽  
pp. 627-634 ◽  
Author(s):  
Zahoor H. Farooqi ◽  
Zonarah Butt ◽  
Robina Begum ◽  
Shanza Rhauf Khan ◽  
Ahsan Sharif ◽  
...  

Abstract Poly(N-isopropylacrylamide-co-methacrylic acid) microgels [p(NIPAM-co-MAAc)] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4) as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp) and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.


2010 ◽  
Vol 105-106 ◽  
pp. 179-183 ◽  
Author(s):  
De Gui Zhu ◽  
Hong Liang Sun ◽  
Yu Shu Wang ◽  
Liang Hui Wang

Fully dense samples of TiB2-TiCX and TiB2-TiCX/15SiC ceramic composites were fabricated by in-situ synthesis under hot isostatic pressing from TiH2, B4C and SiC powders. Their oxidized behaviors at different temperatures were tested. Optical micrograph studies and thermo-gravimetric analyses show that the highest effective temperature of oxidation resistance is 700°C for TiB2-TiCX, and 1100°C for TiB2-TiCX/15SiC. The weight gain of TiB2-TiCX/15SiC below 1100°C is quite low, and it rises up suddenly when the temperature reaches 1200°C. Thus, the highest effective temperature of oxidation resistance is 1100°C for TiB2-TiCX/15SiC. The oxidation dynamic curves of TiB2-TiCX/15SiC ceramics accord with the parabola’s law. The activation energy of TiB2-TiCx/15SiC (189.87kJ.mol-1) is higher than that of TiB2-TiCx (96.44kJ.mol-1). In the oxidation process of TiB2-TiCx/15SiC, TiB2 reacts with oxygen and generates TiO2 and B2O3 at first. A layer of whole homogeneous oxide film cannot be formed, in the mean time, the oxidation of TiC begins. When temperature goes up to 1000°C, TiC phase is totally oxidized. SiC is oxidized to SiO2 at about 900°C, Meanwhile, TiO2 forms denser film than B2O3, which grows and covers the surface of the material, and gives better property of oxidation resistance.


1989 ◽  
Vol 146 ◽  
Author(s):  
Paihung Pan ◽  
Ahmad Kermani ◽  
Wayne Berry ◽  
Jimmy Liao

ABSTRACTElectrical properties of thin (12 nm) SiO2 films with and without in-situ deposited poly Si electrodes have been studied. Thin SiO2 films were grown by the rapid thermal oxidation (RTO) process and the poly Si films were deposited by the rapid thermal chemical vapor deposition (RTCVD) technique at 675°C and 800°C. Good electrical properties were observed for SiO2 films with thin in-situ poly Si deposition; the flatband voltage was ∼ -0.86 V, the interface state density was < 2 × 1010/cm2/eV, and breakdown strength was > 10 MV/cm. The properties of RTCVD poly Si were also studied. The grain size was 10-60 rim before anneal and was 50-120 rim after anneal. Voids were found in thin (< 70 nm) RTCVD poly Si films. No difference in either SiO2 properties or poly Si properties was observed for poly Si films deposited at different temperatures.


2021 ◽  
Vol 13 (11) ◽  
Author(s):  
Paul J. Grote ◽  
Wipanu Rugmai ◽  
Sira Ploymukda ◽  
Borisut Boriphon ◽  
Preeyanuch Jumprom
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document