scholarly journals Performance, interfacial compatibility testing and Rheonaut technology analysis for simultaneous rheology and FTIR of poly(lactic acid)/modified saponite nanocomposites

2021 ◽  
pp. 107232
Author(s):  
Dinghui Chen ◽  
Weijun Zhen
Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2021 ◽  
pp. 089270572110514
Author(s):  
Jing Sun ◽  
Anrong Huang ◽  
Shanshan Luo ◽  
Min Shi ◽  
Jiling Song ◽  
...  

Biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA) composites were prepared by melt blending, and chain extender was used to improve the compatibility of PBAT/PLA blends through the chemical reaction. The influence of PLA and chain extender contents on mechanical properties, morphology, and rheological properties of PBAT/PLA composites was systematically investigated. The results revealed that the Young’s modulus and stress values gradually increased under the same strain, whereas the elongation at break decreased with the increase of chain extender content for PBAT/PLA (80/20) composites. Noteworthy, the presence of chain extender improves the interfacial compatibility between PLA and PBAT phases. At the chain extender content of 0.4, 0.6, and 0.8 wt.%, the extensional viscosity of the composites exhibited an increasing trend, whereas an obvious strain-hardening phenomenon emerged in the uniaxial extensional curves.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1401 ◽  
Author(s):  
Bin Xue ◽  
Hezhi He ◽  
Zhiwen Zhu ◽  
Jiqian Li ◽  
Zhaoxia Huang ◽  
...  

As is an excellent bio-based polymer material, poly(lactic acid) (PLA)’s brittle nature greatly restricts its extensive applications. Herein, poly(butylene succinate) (PBS) was introduced to toughening PLA by melt blending using a self-made triple screw extruder through in situ reactive with ethylene-methyl acrylate-glycidyl methacrylate (EGMA). The effect of EGMA concentrations on the mechanical properties, morphology, interfacial compatibility of PLA/PBS blends were studied. Fourier transform infrared (FT-IR) results demonstrated that the epoxy group of EGMA reacts with the hydroxyl groups of PLA and PBS, which proved the occurrence of interfacial reactions among the tri-component. The significantly improved compatibility between PLA and PBS after EGMA incorporation was made evident by scanning electron microscope (SEM) characterization results. Meanwhile, the contact angle test predicted that the EGMA was selectively localized at the interface between PLA and PBS, and the result was verified by morphological analysis of cryofracture and etched samples. The EGMA improves the compatibility of PLA/PBS blends, and consequently leads to a significantly increased toughness with the elongation at break occurring 83 times more when 10 wt % EGMA was introduced than neat PLA, while impact strength also enhanced by twentyfold. Ultimately, the toughening mechanism of PLA based polymers was established based on the above analysis, exploring a new way for the extensive application for degradable material.


2019 ◽  
Vol 29 (2) ◽  
pp. 220-222 ◽  
Author(s):  
Ilia V. Averianov ◽  
Mariia A. Stepanova ◽  
Iosif V. Gofman ◽  
Alexandra L. Nikolaeva ◽  
Viktor A. Korzhikov-Vlakh ◽  
...  

2020 ◽  
Vol 15 ◽  
pp. 155892502096822
Author(s):  
Hui Sun ◽  
Siwei Peng ◽  
Mingjun Wang ◽  
Feichao Zhu ◽  
Gajanan Bhat ◽  
...  

A kind of magnetic poly (lactic acid) (PLA) melt blown nonwoven fabric (MB) was fabricated by the introduction of ferroferric oxide (Fe3O4) nanoparticles to improve its air filtration performances. In view of the poor compatibility of two components, the poly (L-lactic acid) (PLLA) molecular chains was firstly grafted onto the Fe3O4 nanoparticles surface via the ring opening polymerization (ROP). Then, PLA/Fe3O4-g-PLLA composite masterbatches with different mass ratios were prepared by melt-blending method and processed into the corresponding composite MB. The structures and performances of PLA/Fe3O4-g-PLLA composite masterbatches and their MB were investigated. The results showed that the addition of Fe3O4-g-PLLA nanohybrids hardly influenced the glass transition, cold crystallization and melting behaviors of the composite masterbatches. Though the melt fluidity of the composite masterbatches reduced with the Fe3O4-g-PLLA content increasing, the composite masterbatches still could present the appropriate processability in the range of 210°C to 230°C. Fe3O4-g-PLLA could be uniformly dispersed in PLA matrix and had a good interfacial compatibility with the matrix. Compared with pure PLA MB, the fiber surface of the composite MB became slightly rough, the pore size and distribution of the fiber web increased. The addition of Fe3O4-g-PLLA endowed PLA MB with magnetism. With the increasing of Fe3O4-g-PLLA content, the air permeability of the composite MB was improved and their filtration resistance obviously reduced. When the content of Fe3O4-g-PLLA was 0.5 wt%, the filtration efficiency of the composite MB reached the maximum. Moreover, the composite MB have higher longitudinal tensile strength and elongation at break than those of pure PLA MB.


ACS Omega ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 1955-1968 ◽  
Author(s):  
Feng Wu ◽  
Manjusri Misra ◽  
Amar K. Mohanty

2011 ◽  
Vol 31 (6-7) ◽  
Author(s):  
Fang-Cheng Pai ◽  
Hou-Hsein Chu ◽  
Sun-Mou Lai

Abstract A melt blending process was used to prepare poly(lactic acid) (PLA)/metallocene catalyzed polyethylene octene copolymer (POE) blends in order to toughen PLA. A commercialized ethylene-glycidyl methacrylate copolymer (EGMA) was applied as a compatibilizer to improve the dispersion and interaction of dispersed POE to the PLA matrix. The results showed that chemical interaction seems to be the driving force for reinforcing the compatibility between PLA and POE, and also the dispersion of POE into the PLA matrix domain. With the incorporation of 10 phr EGMA in the blends, POE was well-dispersed at a sub-micrometer scale within the PLA matrix, indicating better interfacial compatibility between PLA and POE. The impact strength test revealed that POE could significantly toughen PLA containing EGMA in the blends, up to no-break level regarding unnotched Izod impact strength at 10 phr EGMA content. With the increase of EGMA content, the blends showed lower tensile strength, but higher elongation at break due to the elastomeric characteristics of EGMA. When 10 phr of the EGMA was incorporated into the blends, its elongation at break reached 54.5%, 10.7 times that of neat PLA at 5.1%. The melt viscosity of compatibilized blends containing 10 phr EGMA increased by more than 50% in comparison with the non-compatibilized blend, which implied a good interfacial interaction between the PLA and POE interface.


Sign in / Sign up

Export Citation Format

Share Document