Preparation of nano-TiO2/polyurethane emulsions via in situ RAFT polymerization

2010 ◽  
Vol 69 (4) ◽  
pp. 534-538 ◽  
Author(s):  
Xiang-Chen Che ◽  
Yu-Zi Jin ◽  
Youn-Sik Lee
2016 ◽  
Vol 52 (4) ◽  
pp. 585-593 ◽  
Author(s):  
Assunta Nuzzo ◽  
Elisa Madonna ◽  
Pierluigi Mazzei ◽  
Riccardo Spaccini ◽  
Alessandro Piccolo

2016 ◽  
Vol 18 (1) ◽  
Author(s):  
Gonggang Liu ◽  
Ruimeng Wang ◽  
Hui Liu ◽  
Kai Han ◽  
Huanqing Cui ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1403 ◽  
Author(s):  
Jie Li ◽  
Bing Xie ◽  
Kai Xia ◽  
Yingchun Li ◽  
Jing Han ◽  
...  

Nano titanium dioxide (TiO2) with photocatalytic activity was firstly modified by diethanolamine, and it was then doped with broad spectrum antibacterial silver (Ag) by in situ method. Further, both Ag doped TiO2-chitosan (STC) and TiO2-chitosan (TC) composites were prepared by the inverse emulsion cross-linking reaction. The antibacterial activities of STC composites were studied and their antibacterial mechanisms under visible light were investigated. The results show that in situ doping and inverse emulsion method led to good dispersion of Ag and TiO2 nanoparticles on the cross-linked chitosan microsphere. The STC with regular particle size of 1–10 μm exhibited excellent antibacterial activity against E. coli, P. aeruginosa and S. aureus under visible light. It is believed that STC with particle size of 1–10 μm has large specific surface area to contact with bacterial cell wall. The increased antibacterial activity was attributed to the enhancement of both electron-hole separations at the surface of nano-TiO2 by the silver ions under the visible light, and the synergetic and sustained release of strong oxidizing hydroxyl radicals of nano-TiO2, together with silver ions against bacteria. Thus, STC composites have great potential applications as antibacterial agents in the water treatment field.


2012 ◽  
Vol 44 (8) ◽  
pp. 555-569 ◽  
Author(s):  
Saeid Rahimi-Razin ◽  
Vahid Haddadi-Asl ◽  
Mehdi Salami-Kalajahi ◽  
Farid Behboodi-Sadabad ◽  
Hossein Roghani-Mamaqani

2020 ◽  
Author(s):  
T.-L. Hsiung ◽  
L.-W. Wei ◽  
H.-L. Huang ◽  
H. Paul Wang

Abstract Toxic disinfection byproducts such as trihalomethanes (CHCl3) are frequently found after chlorination for drinking water. Nano TiO2 which has been widely used for photocatalytic degradation of organic pollutants in wastewater, however, has relatively low effectiveness in the treatments of trace CHCl3. To engineer capable TiO2 photocatalysts, an understanding of their photoactive sites is of great importance and interest. By in situ X-ray absorption near edge structure (XANES) spectroscopy, photoactive sites such as A1 (4969 eV), A2 (4971 eV) and A3 (4972 eV) can be distinguished asfour-, five-, and six- coordinated Ti species, respectively in the nano-TiO2 (8.5 and 4.6 nm for TiO2 on SBA-15), TiO2 clusters (TiO2-SiO2), and highly atomic dispersed Ti (Ti-MCM-41) photocatalysts. It appears that the reactivity for the photocatalytic degradation of trace CHCl3 in drinking water lacks an expected relationship with the crystalline phase, band gap absorption edge, nor the particle size of the TiO2-based photocatalysts. Notably, the A2 sites being the main photocatalytic active species of the TiO2 may be accountable for the main (about 95%) photocatalytic degradation of trace CHCl3 in drinking water (7.2 ppm CHCl3/gTiO2∙hr). This work reveals that the A2 active sites of a TiO2-based photocatalyst are responsible for the photocatalytic reactivity, especially in photocatalytic degradation of CHCl3 in drinking water.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3145 ◽  
Author(s):  
Katharina Nieswandt ◽  
Prokopios Georgopanos ◽  
Clarissa Abetz ◽  
Volkan Filiz ◽  
Volker Abetz

In this work, we present a novel synthetic route to diblock copolymers based on styrene and 3-vinylpyridine monomers. Surfactant-free water-based reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of styrene in the presence of the macroRAFT agent poly(3-vinylpyridine) (P3VP) is used to synthesize diblock copolymers with molecular weights of around 60 kDa. The proposed mechanism for the poly(3-vinylpyridine)-block-poly(styrene) (P3VP-b-PS) synthesis is the polymerization-induced self-assembly (PISA) which involves the in situ formation of well-defined micellar nanoscale objects consisting of a PS core and a stabilizing P3VP macroRAFT agent corona. The presented approach shows a well-controlled RAFT polymerization, allowing for the synthesis of diblock copolymers with high monomer conversion. The obtained diblock copolymers display microphase-separated structures according to their composition.


2018 ◽  
Vol 136 (8) ◽  
pp. 47089
Author(s):  
Miguel Ángel Vega‐Hernández ◽  
Alberto Rosas‐Aburto ◽  
Eduardo Vivaldo‐Lima ◽  
Humberto Vázquez‐Torres ◽  
Gema Susana Cano‐Díaz ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document