Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol

2017 ◽  
Vol 105 ◽  
pp. 111-122 ◽  
Author(s):  
Suzana M. Cakić ◽  
Ivan S. Ristić ◽  
Milena M. Cincović ◽  
Nada Č. Nikolić ◽  
Ljubiša B. Nikolić ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 4784
Author(s):  
Ying Li ◽  
Sichong Chen ◽  
Jun Shen ◽  
Siqi Zhang ◽  
Ming Liu ◽  
...  

Biobased cationic waterborne polyurethanes (WPUs) were prepared using isophorone diisocyanate (IPDI), N-methyl diethanolamine (N-MDEA), polycaprolactone (PCL) diol, hydrochlotic acid (HCl), and 1,4-butanediol (BDO). To improve the mechanical performance and adhesive strength of the waterborne polyurethane films, different amounts of castor oil (CO) acting as a cross-linking agent were incorporated in the polyurethane structure. The structures of the waterborne polyurethanes were assessed by Fourier-transform infrared spectroscopy (FTIR). The combination of CO had a positive effect on the dispersion and stability properties of WPUs. WPUs containing higher content of CO demonstrated a remarkable enhancement in homogeneity among particles. The stable aqueous dispersion was obtained even when N-MDEA loading was as low as 3.2 wt%; a bonus of this low hydrophilic moiety was the excellent adhesive strength, whose T-peel strength could reach up to 36.8 N/25 mm, about 114% higher than that of WPU (17.2 N/25 mm) without any CO content. The elongation at break of CO7.40%-WPU was 391%. In addition, the fracture mechanism of the waterborne polyurethane films transformed from the brittle failure to the ductile fracture. The experiment results showed the CO-modified WPUs displayed excellent film-forming property, flexibility, and adhesion, which can be employed for constructing the eco-friendly, biodegradable, cationic, waterborne polyurethanes.


2013 ◽  
Vol 17 (9) ◽  
pp. 930-942 ◽  
Author(s):  
Jing Hao ◽  
Elizabeth A. Rainbolt ◽  
Katherine Washington ◽  
Michael C. Biewer ◽  
Mihaela C. Stefan

2017 ◽  
Vol 134 (31) ◽  
pp. 45153 ◽  
Author(s):  
Meenu Teotia ◽  
Nazia Tarannum ◽  
Rakesh Kumar Soni
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Becerril-Arreola ◽  
R. E. Bucklin

AbstractPlastic pollution is a pressing issue because authorities struggle to contain and process the enormous amount of waste produced. We study the potential for reducing plastic waste by examining the efficiency with which different polyethylene terephthalate (PET) bottles deliver beverages. We find that 80% of the variation in bottle weight is explained by bottle capacity, 16% by product category, and 1% by brand. Bottle weight is quadratic and convex function of capacity, which implies that medium capacity bottles are most efficient at delivering consumable product. Local data on PET bottle sales and municipal waste recovery validate the findings. A 20% shift in consumption from smaller to larger bottles could reduce the production of PET waste by over 10,000 t annually in the U.S. alone.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 643 ◽  
Author(s):  
Dae Geun Han ◽  
Chi Bum Ahn ◽  
Ji-Hyun Lee ◽  
Yongsung Hwang ◽  
Joo Hyun Kim ◽  
...  

Due to the morphological resemblance between the electrospun nanofibers and extracellular matrix (ECM), electrospun fibers have been widely used to fabricate scaffolds for tissue regeneration. Relationships between scaffold morphologies and cells are cell type dependent. In this study, we sought to determine an optimum electrospun fiber diameter for human vascular smooth muscle cell (VSMC) regeneration in vascular scaffolds. Scaffolds were produced using poly(caprolactone) (PCL) electrospun fiber diameters of 0.5, 0.7, 1, 2, 2.5, 5, 7 or 10 μm, and VSMC survivals, proliferations, infiltrations, and phenotypes were recorded after culturing cells on these scaffolds for one, four, seven, or 10 days. VSMC phenotypes and macrophage infiltrations into scaffolds were evaluated by implanting scaffolds subcutaneously in a mouse for seven, 14, or 28 days. We found that human VSMC survival was not dependent on the electrospun fiber diameter. In summary, increasing fiber diameter reduced VSMC proliferation, increased VSMC infiltration and increased macrophage infiltration and activation. Our results indicate that electrospun PCL fiber diameters of 7 or 10 µm are optimum in terms of VSMC infiltration and macrophage infiltration and activation, albeit at the expense of VSMC proliferation.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
A. Hamlekhan ◽  
M. Mozafari ◽  
N. Nezafati ◽  
M. Azami ◽  
H. Hadipour

In this study, poly(∊-caprolactone) (PCL), gelatin (GEL) and nanocrystalline hydroxyapatite (HAp) was applied to fabricate novel PCL-GEL-HAp nanaocomposite scaffolds through a new fabrication method. With the aim of finding the best fabrication method, after testing different methods and solvents, the best method and solvents were found, and the nanocomposites were prepared through layer solvent casting combined with freeze-drying. Acetone and distillated water were used as the PCL and GEL solvents, respectively. The mechanical test showed that the increasing of the PCL weight through the scaffolds caused the improvement of the final nanocomposite mechanical behavior due to the increasing of the ultimate stress, stiffness and elastic modulus (8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL). The biomineralization investigation of the scaffolds revealed the formation of bone-like apatite layers after immersion in simulated body fluid (SBF). In addition, the in vitro cytotoxity of the scaffolds using L929 mouse fibroblast cell line (ATCC) indicated no sign of toxicity. These results indicated that the fabricated scaffold possesses the prerequisites for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document