Antibacterial effect of Grapefruit Seed Extract on food-borne pathogens and its application in the preservation of minimally processed vegetables

2007 ◽  
Vol 45 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Wentao Xu ◽  
Wei Qu ◽  
Kunlun Huang ◽  
Feng Guo ◽  
Jiajia Yang ◽  
...  
2019 ◽  
Vol 82 (11) ◽  
pp. 2001-2006 ◽  
Author(s):  
HWAN HEE YU ◽  
MYUNG WOOK SONG ◽  
YE JI SONG ◽  
NA-KYOUNG LEE ◽  
HYUN-DONG PAIK

ABSTRACT A mixed natural preservative, including grapefruit seed extract (GSE), cinnamaldehyde (CA), and nisin, was investigated for the reduction of Listeria monocytogenes growth on lettuce and raw pork loin. The MIC of each natural preservative was investigated for L. monocytogenes strains tested. Following central composite design, lettuce and pork loin were inoculated with a cocktail of three strains of L. monocytogenes (ATCC 15313, H7962, and NADC 2045 [Scott A]) and treated with the mixed natural preservative that included GSE (0.64 to 7.36 ppm), CA (1.6 to 18.4 ppm), and nisin (0.48 to 5.5 ppm). The MIC of GSE was 31.25 ppm in tested L. monocytogenes strains, and of CA was 500 and 1,000 ppm in L. monocytogenes ATCC 15313 and the other L. monocytogenes strains, respectively. The MIC of nisin was 250 ppm. The R2 value of this model was more than 0.9, and the lack of fit was not significant. The mixed natural preservative showed a synergistic antimicrobial effect and reduced the growth of L. monocytogenes by 4 to 5 log CFU/g on lettuce. In addition, the reduction of L. monocytogenes on pork loin was 3 log CFU/g. The mixed natural preservative, which consisted of GSE (6 to 8 ppm), CA (15 to 20 ppm), and nisin (5 to 6 ppm), increased the antibacterial effect against L. monocytogenes. These results suggest that the use of the mixed natural preservative could reduce the economic cost of food preparation, and response surface methodology is considered effective when measuring synergy among antimicrobials.


2019 ◽  
Vol 121 (10) ◽  
pp. 2265-2276
Author(s):  
Nilgün Öncül ◽  
Şeniz Karabiyikli

Purpose Nowadays, natural products are preferred for food safety and preservation due to the demand of consumers. The industrial methods which have been in use for a long period of time have had an adverse impact on organoleptic properties of foods or on human health. The purpose of this paper is to investigate the antibacterial effects of unripe grape products on natural and inoculated micro-flora of lettuce as an alternative functional and natural antibacterial agent for consumers and food industry. Design/methodology/approach The antibacterial effects of products on initial micro-flora of lettuce were detected. The lettuce samples were treated with products for different treatment times (0, 5 and 10 min). The antibacterial effects of products against inoculated micro-flora on lettuce were obtained. Lettuce samples were separately inoculated with food-borne pathogens (~4 log CFU/g) and treated with products for the same treatment periods. Findings Unripe grape products decreased the initial micro-flora by approximately 1 log CFU/g in 5 min. Unripe grape products dramatically inhibited the inoculated E. coli on lettuce samples right after the treatment. Majority of the unripe grape products decreased the number of S. Typhimurium and L. monocytogenes to an undetectable level in 5 min. S. aureus was the most resistant microorganism among the tested cultures. It was concluded based on the conspicuous results on the inhibition of E. coli, S. Typhimurium and L. monocytogenes that unripe grape products can be considered as natural antimicrobial agents for food safety. Originality/value This study is also valuable since it enables the in situ testing of the potential usage of unripe grape products against food-borne pathogens.


2014 ◽  
Vol 79 (6) ◽  
pp. M1159-M1167 ◽  
Author(s):  
Jae-Suk Choi ◽  
Yu-Ri Lee ◽  
Yu-Mi Ha ◽  
Hyo Ju Seo ◽  
Young Hun Kim ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Etinosa O. Igbinosa ◽  
Abeni Beshiru ◽  
Isoken H. Igbinosa ◽  
Abraham G. Ogofure ◽  
Kate E. Uwhuba

The demand for minimally processed vegetables (African salad) has increased partly due to its inclusion in ready-to-eat foods. Nevertheless, the associated risk of the presence of emergent foodborne pathogens, such as Vibrio parahaemolyticus might be underestimated. The present study was designed to isolate and characterize foodborne V. parahaemolyticus from minimally processed vegetables using culture-based methods and molecular approach. A total of 300 samples were examined from retail outlets between November 2018 and August 2019 from Southern Nigeria. The prevalence of vibrios from the overall samples based on the colonial proliferation of yellow, blue-green and/or green colonies on thiosulfate citrate bile salts sucrose agar was 74/300 (24.6%). An average of two green or blue-green colonies from respective plates was screened for V. parahaemolyticus using analytical profile index (API) 20 NE. Polymerase chain reaction further confirmed the identity of positive V. parahaemolyticus. The counts of V. parahaemolyticus ranged from 1.5 to 1,000 MPN/g. A total of 63 recovered V. parahaemolyticus were characterized further. The resistance profile of the isolates include ampicillin 57/63 (90.5%), cefotaxime 41/63 (65.1%), ceftazidime 30/63 (47.6%), amikacin 32/63 (50.8%), kanamycin 15/63 (23.8%), and oxytetracycline 16/63 (25.4%). The multiple antibiotic index ranged from 0–0.81. The formation of biofilm by the isolates revealed the following: strong formation 15/63 (23.8%), moderate formation 31/63 (49.2%), weak formation 12/63 (19.1%), and no formation 5/63 (7.9%). A total of 63/63 (100%), 9/63 (14.3%), and 20/63 (31.8%) of the isolates harbored the tox R gene, TDH-related hemolysin (trh) and thermostable direct hemolysin (tdh) determinants respectively. The isolates with O2 serogroup were most prevalent via PCR. Isolates that were resistant to tetracycline, kanamycin, and chloramphenicol possessed resistant genes. The presence of multidrug-resistant vibrios in the minimally processed vegetables constitutes a public health risk and thus necessitates continued surveillance.


Sign in / Sign up

Export Citation Format

Share Document