Preparation of anatase TiO2 nanoparticles with high thermal stability and specific surface area by alcohothermal method

2009 ◽  
Vol 194 (1-2) ◽  
pp. 149-152 ◽  
Author(s):  
Yanting Li ◽  
Xiuguo Sun ◽  
Huiwan Li ◽  
Shaohui Wang ◽  
Yu Wei
2004 ◽  
Vol 20 (03) ◽  
pp. 251-255
Author(s):  
Zeng Li ◽  
◽  
Wang Chun-Ming ◽  
Wei Ji-Ying ◽  
Zhu Yue-Xiang ◽  
...  

2003 ◽  
Vol 18 (4) ◽  
pp. 797-803 ◽  
Author(s):  
Naofumi Uekawa ◽  
Miki Suzuki ◽  
Takahiro Ohmiya ◽  
Fumihiko Mori ◽  
Yong Jun Wu ◽  
...  

Ti-peroxy compound was synthesized from Ti(O-iPr)4 and H2O2. Anatase and rutile TiO2 nanoparticles were prepared by heating the Ti-peroxy compound diluted with a polyol aqueous solution at 368 K for 24 h. In this research, ethylene glycol, glycerin, erythritol, and D-mannitol were used as polyols in the diluting solution. The ratio of anatase/rutile of the TiO2 obtained depended on the polyol concentration in the diluting solution. Furthermore, the polyol concentration at which single-phase anatase could be obtained was lowest when the number of OH groups in the polyol molecule was the highest. With increasing polyol concentration, the obtained TiO2 nanoparticles showed increasing specific surface area and decreasing particle size.


2008 ◽  
Vol 15 (03) ◽  
pp. 329-336 ◽  
Author(s):  
YIMIN ZHANG ◽  
SHAOXIAN SONG ◽  
MIN ZHANG ◽  
BIYANG TUO

In this work, a Ti -pillared montmorillonite with high thermal stability has been prepared by using a Na -montmorillonite as the host clay and polyhydroxy-titania ions as the pillaring precursor. The formation of Ti -pillared montmorillonite has been confirmed from the characterizations through X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric–differential scanning calorimeter, and specific surface area analyses. In the preparation of Ti -pillared montmorillonite several parameters, such as the type of solvent in which the synthesis is realized, the ratio of polyhydroxy-titania ions and montmorillonite, the intercalation time, the calcining temperature, and calcining time, were tested to understand their effects on the basal spacing. It was shown that this method could produce a Ti -pillared montmorillonite with the basal spacing of 3.74 nm, specific surface area of 409 m2/g, and mean pore size of 2.94 nm, as well as a high thermal stability up to 900°C.


2007 ◽  
Vol 336-338 ◽  
pp. 2017-2020 ◽  
Author(s):  
Fan Yong Ran ◽  
Wen Bin Cao ◽  
Yan Hong Li ◽  
Xiao Ning Zhang

Nanosize anatase TiO2 powders have been synthesized by hydrothermal synthesis by using technical grade TiOSO4 as precursor and urea as precipitating agent. The initial pressure of the reaction system was set at 6 MPa. Stirring speed was fixed at 300r/min. The reaction system reacted at the temperature ranged from 110 to 150°C for holding 2hrs to 8hrs and the concentration of the precursor was ranged from 0.25M to1.5M. XRD patterns show that the synthesized powders are in the form of anatase phase. Calculated grain size is ranged from 6.7 to 8.9nm by Scherrer method from the line broadening of the (101) diffraction peak of anatase. The specific surface area of the powders synthesized under different conditions is ranged from 124 to 240m2/g. The grain size of the powders increases with the increase of the reaction temperature, holding time and precursor concentration, respectively. The specific surface area decreases with the increase of reaction temperature and holding time, and does not obviously change with the change of precursor concentration when the concentration of the precursor is less than 1M. However, when the concentration is higher than 1M, the specific surface area will decrease quickly with the increase of the precursor concentration. XRD and DSC-TG analysis shows that the synthesized anatase TiO2 will begin to transform to rutile TiO2 at about 840°C. When heated to 1000°C for holding 1h, the anatase powders will transform to rutile completely.


2013 ◽  
Vol 804 ◽  
pp. 89-93
Author(s):  
Jing Yi Yang ◽  
Yu Qiong Chen ◽  
Ying Chuan Ma ◽  
Xin Zhang ◽  
Ling Ling Luo ◽  
...  

Graphene is a fascinating new member of carbon materials with honeycomb and one-atom-thick structure, consisting of 2D hexagonal lattices of sp2 carbon atoms covalently bonded. Graphene has a huge theory specific surface area (over 2600 m2 g1), good thermal conductivity, high values of Youngs modulus and fracture strength, high thermal stability and chemical stability and fast mobility of charge carriers, etc.. In recent years, many researchers found graphene have outstanding adsorption capacity of dyes in aqueous solution due to its high specific surface area. This paper summarized the graphene, graphene oxide and functionalized graphene removing various dyes in wastewater.


2010 ◽  
Vol 1256 ◽  
Author(s):  
Girija Shankar Chaubey ◽  
Yuan Yao ◽  
Julien Pierre Amelie Makongo Mangan ◽  
Pranati Sahoo ◽  
Pierre F. P. Poudeu ◽  
...  

AbstractA simple method is reported for the synthesis of monodispersed HfO2 nanoparticles by the ammonia catalyzed hydrolysis and condensation of hafnium (IV) tert-butoxide in the presence of surfactants at room temperature. Transmission electron microscopy shows faceted nanoparticles with an average diameter of 3-4 nm. As-synthesized nanoparticles are amorphous in nature and crystallize upon moderate heat treatment. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and good thermal stability. Specific surface area was about 239 m2/g on as-prepared nanoparticle samples while those annealed at 500 °C have specific surface area of 221 m2/g indicating that there was no significant increase in particle size. This result was further confirmed by TEM images of nanoparticles annealed at 300 °C and 500 °C. X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document