A molding method of Na2CO3/Al2O3 sorbents with high sphericity and low roughness for enhanced attrition resistance in CO2 sorption/desorption process via extrusion-spheronization method

2020 ◽  
Vol 366 ◽  
pp. 520-526 ◽  
Author(s):  
Wei Liu ◽  
Ye Wu ◽  
Tianyi Cai ◽  
Zhikang Xu ◽  
Daoyin Liu ◽  
...  
Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 62 ◽  
Author(s):  
Zonghao Zhang ◽  
Shuai Pi ◽  
Donglin He ◽  
Changlei Qin ◽  
Jingyu Ran

The application of circulating fluidized bed technology in calcium looping (CaL) requires that CaO-based sorbents should be manufactured in the form of spherical pellets. However, the pelletization of powdered sorbents is always hampered by the problem that the mechanical strength of sorbents is improved at the cost of loss in CO2 sorption performance. To promote both the CO2 sorption and anti-attrition performance, in this work, four kinds of pore-forming materials were screened and utilized to prepare sorbent pellets via the extrusion-spheronization process. In addition, impacts of the additional content of pore-forming material and their particle sizes were also investigated comprehensively. It was found that the addition of 5 wt.% polyethylene possesses the highest CO2 capture capacity (0.155 g-CO2/g-sorbent in the 25th cycle) and mechanical performance of 4.0 N after high-temperature calcination, which were about 14% higher and 25% improved, compared to pure calcium hydrate pellets. The smaller particle size of pore-forming material was observed to lead to a better performance in CO2 sorption, while for mechanical performance, there was an optimal size for the pore-former used.


Author(s):  
Vivek Ranjan Sinha ◽  
M. K. Agrawal ◽  
A. Agarwal ◽  
Gurpreet Singh ◽  
D. Ghai

2010 ◽  
Vol 25 (5) ◽  
pp. 341-345
Author(s):  
K. H. Kim ◽  
W. Kim ◽  
J. C. Hong ◽  
H. S. Ko ◽  
B. K. Kim ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Bingwei Wang ◽  
Jianping Liu ◽  
Zhenghua Li ◽  
Yulong Xia ◽  
Shuangshuang Zhang ◽  
...  

Background: At present, there were numerous researches on the migration of components in tablets and granules, the investigation in the pharmaceutical literatrue concerning the effect of drying rate on the migration of water-soluble components of pellets was limited. Temperature and relative humidity (RH) were crucial parameters during the drying process which was an essential step in the preparation of pellets via wet extrusion/spheronization. To quantify these variables, the water loss percentage of pellets per minute was defined as drying rate. Objective: The study aimed to investigate the influence of drying rate on the migration of water-soluble components in wet pellets and the potential migrated mechanism. Methods: The pellets containing tartrazine as a water-soluble model drug and microcrystalline cellulose as a matrix former were prepared by extrusion/spheronization and dried at four different drying temperature and relative humidity. Afterward, the extent of migrated tartrazine was assessed regarding appearance, in-vitro dissolution test, Differential Scanning Calorimetry, X-Ray Powder Diffraction, Attenuated total reflectance Fourier transform infrared spectroscopy and Confocal Raman Mapping. Results: Results demonstrated that red spots of tartrazine appeared on the surface of pellets and more than 40% tartrazine were burst released within 5 minutes when pellets dried at 60℃/RH 10%. While pellets dried at 40℃/RH 80%, none of these aforementioned phenomena was observed. Conclusion: In conclusion, the faster drying rate was, the more tartrazine migrated to the exterior of pellets. Adjusting drying temperature and relative humidity appropriately could inhibit the migration of water-soluble components within wet extrusion/spheronization pellets.


2016 ◽  
Vol 10 (3) ◽  
pp. 192-206
Author(s):  
Hetal Patel ◽  
Kishan Patel ◽  
Sanjay Tiwari ◽  
Sonia Pandey ◽  
Shailesh Shah ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Hetal Patel ◽  
Mukesh Gohel

Enteric coated dosage form bypasses the stomach and releases the drug into the small intestine. Advantages of enteric coated pellets in comparison with enteric coated tablets are a) Pellets provide rapid onset of action and faster drug release due to the smaller size than tablets and b) Pellets exhibit less residence time of acid-labile drugs in the stomach compared to tablets. Dosage form coat can be damaged by longer resistance time in the stomach. The present review summarizes the current state of enteric coated pellets where core pellets are prepared by extrusion-spheronization technique and the enteric coating is applied in a fluidized bed processor. Two approaches are involved in the preparation of core pellets. In the first approach, a mixture of drug and excipient(s)/co-processed excipient is passed through extruders to prepare core pellets. In the second approach, excipient core pellets are prepared by extrusion technique and the drug is layered onto it before the enteric coating. The excipients present in the core pellets decide immediate or extended release of drug in the intestine. The coprocessed excipient pellets provide less batch variability and provide a platform for layering of many drugs before enteric coating. Some patents included enteric coating pellets [CN105456223 (A), CN105596310 (A), CN105616371 (A), CN105663095 (A), CN101611766B, CN106511862 (A), CN106668018 (A), CN106727381 (A), CN106924222 (A), TW200624127 (A), US 2017/0165248A1, US 2017/0224720A1] are discussed.


2021 ◽  
Vol 286 ◽  
pp. 116507
Author(s):  
Ranjani Siriwardane ◽  
Jarrett Riley ◽  
William Benincosa ◽  
Samuel Bayham ◽  
Michael Bobek ◽  
...  

2021 ◽  
Vol 4 ◽  
pp. 100109
Author(s):  
Franciele L. Bernard ◽  
Evandro A. Duarte ◽  
Barbara B. Polesso ◽  
Rafael B. Duczinski ◽  
Sandra Einloft
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document