scholarly journals Investigation of Pore-Formers to Modify Extrusion-Spheronized CaO-Based Pellets for CO2 Capture

Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 62 ◽  
Author(s):  
Zonghao Zhang ◽  
Shuai Pi ◽  
Donglin He ◽  
Changlei Qin ◽  
Jingyu Ran

The application of circulating fluidized bed technology in calcium looping (CaL) requires that CaO-based sorbents should be manufactured in the form of spherical pellets. However, the pelletization of powdered sorbents is always hampered by the problem that the mechanical strength of sorbents is improved at the cost of loss in CO2 sorption performance. To promote both the CO2 sorption and anti-attrition performance, in this work, four kinds of pore-forming materials were screened and utilized to prepare sorbent pellets via the extrusion-spheronization process. In addition, impacts of the additional content of pore-forming material and their particle sizes were also investigated comprehensively. It was found that the addition of 5 wt.% polyethylene possesses the highest CO2 capture capacity (0.155 g-CO2/g-sorbent in the 25th cycle) and mechanical performance of 4.0 N after high-temperature calcination, which were about 14% higher and 25% improved, compared to pure calcium hydrate pellets. The smaller particle size of pore-forming material was observed to lead to a better performance in CO2 sorption, while for mechanical performance, there was an optimal size for the pore-former used.

2021 ◽  
Vol 23 (1) ◽  
pp. 200
Author(s):  
Raquel V. Barrulas ◽  
Clara López-Iglesias ◽  
Marcileia Zanatta ◽  
Teresa Casimiro ◽  
Gonzalo Mármol ◽  
...  

CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel’s properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6–97.0 %) and surface areas (270–744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g−1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30% AEROPIL.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 542 ◽  
Author(s):  
Stefania Gardarsdottir ◽  
Edoardo De Lena ◽  
Matteo Romano ◽  
Simon Roussanaly ◽  
Mari Voldsund ◽  
...  

This paper presents an assessment of the cost performance of CO2 capture technologies when retrofitted to a cement plant: MEA-based absorption, oxyfuel, chilled ammonia-based absorption (Chilled Ammonia Process), membrane-assisted CO2 liquefaction, and calcium looping. While the technical basis for this study is presented in Part 1 of this paper series, this work presents a comprehensive techno-economic analysis of these CO2 capture technologies based on a capital and operating costs evaluation for retrofit in a cement plant. The cost of the cement plant product, clinker, is shown to increase with 49 to 92% compared to the cost of clinker without capture. The cost of CO2 avoided is between 42 €/tCO2 (for the oxyfuel-based capture process) and 84 €/tCO2 (for the membrane-based assisted liquefaction capture process), while the reference MEA-based absorption capture technology has a cost of 80 €/tCO2. Notably, the cost figures depend strongly on factors such as steam source, electricity mix, electricity price, fuel price and plant-specific characteristics. Hence, this confirms the conclusion of the technical evaluation in Part 1 that for final selection of CO2 capture technology at a specific plant, a plant-specific techno-economic evaluation should be performed, also considering more practical considerations.


Fuel ◽  
2014 ◽  
Vol 127 ◽  
pp. 109-115 ◽  
Author(s):  
Antonio Coppola ◽  
Piero Salatino ◽  
Fabio Montagnaro ◽  
Fabrizio Scala

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2617 ◽  
Author(s):  
Xiaotong Ma ◽  
Yingjie Li ◽  
Yi Qian ◽  
Zeyan Wang

Calcium looping is a promising technology to capture CO2 from the process of coal-fired power generation and gasification of coal/biomass for hydrogen production. The decay of CO2 capture activities of calcium-based sorbents is one of the main problems holding back the development of the technology. Taking carbide slag as a main raw material and Ca12Al14O33 as a support, highly active CO2 sorbents were prepared using the hydrothermal template method in this work. The effects of support ratio, cycle number, and reaction conditions were evaluated. The results show that Ca12Al14O33 generated effectively improves the cyclic stability of CO2 capture by synthetic sorbents. When the Al2O3 addition is 5%, or the Ca12Al14O33 content is 10%, the synthetic sorbent possesses the highest cyclic CO2 capture performance. Under harsh calcination conditions, the CO2 capture capacity of the synthetic sorbent after 30 cycles is 0.29 g/g, which is 80% higher than that of carbide slag. The superiority of the synthetic sorbent on the CO2 capture kinetics mainly reflects at the diffusion-controlled stage. The cumulative pore volume of the synthetic sorbent within the range of 10–100 nm is 2.4 times as high as that of calcined carbide slag. The structure of the synthetic sorbent reduces the CO2 diffusion resistance, and thus leads to better CO2 capture performance and reaction rate.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3211
Author(s):  
Guillermo Martinez Castilla ◽  
Diana Carolina Guío-Pérez ◽  
Stavros Papadokonstantakis ◽  
David Pallarès ◽  
Filip Johnsson

The cyclic carbonation-calcination of CaCO3 in fluidized bed reactors not only offers a possibility for CO2 capture but can at the same time be implemented for thermochemical energy storage (TCES), a feature which will play an important role in a future that has an increasing share of non-dispatchable variable electricity generation (e.g., from wind and solar power). This paper provides a techno-economic assessment of an industrial-scale calcium looping (CaL) process with simultaneous TCES and CO2 capture. The process is assumed to make profit by selling dispatchable electricity and by providing CO2 capture services to a certain nearby emitter (i.e., transport and storage of CO2 are not accounted). Thus, the process is connected to two other facilities located nearby: a renewable non-dispatchable energy source that charges the storage and a plant from which the CO2 in its flue gas flow is captured while discharging the storage and producing dispatchable electricity. The process, which offers the possibility of long-term storage at ambient temperature without any significant energy loss, is herein sized for a given daily energy input under certain boundary conditions, which mandate that the charging section runs steadily for one 12-h period per day and that the discharging section can provide a steady output during 24 h per day. Intercoupled mass and energy balances of the process are computed for the different process elements, followed by the sizing of the main process equipment, after which the economics of the process are computed through cost functions widely used and validated in literature. The economic viability of the process is assessed through the breakeven electricity price (BESP), payback period (PBP), and as cost per ton of CO2 captured. The cost of the renewable energy is excluded from the study, although its potential impact on the process costs if included in the system is assessed. The sensitivities of the computed costs to the main process and economic parameters are also assessed. The results show that for the most realistic economic projections, the BESP ranges from 141 to −20 $/MWh for different plant sizes and a lifetime of 20 years. When the same process is assessed as a carbon capture facility, it yields a cost that ranges from 45 to −27 $/tCO2-captured. The cost of investment in the fluidized bed reactors accounts for most of the computed capital expenses, while an increase in the degree of conversion in the carbonator is identified as a technical goal of major importance for reducing the global cost.


Author(s):  
Kely Vieira ◽  
Gretta Larisa Aurora Arce Ferrufino ◽  
Ivonete Ávila
Keyword(s):  

2012 ◽  
Vol 55 ◽  
pp. 18-26 ◽  
Author(s):  
Qiang Wang ◽  
Hui Huang Tay ◽  
Zhanhu Guo ◽  
Luwei Chen ◽  
Yan Liu ◽  
...  

2021 ◽  
Vol 284 ◽  
pp. 119734
Author(s):  
Jiawei Hu ◽  
Plaifa Hongmanorom ◽  
Vladimir V. Galvita ◽  
Zhan Li ◽  
Sibudjing Kawi

Sign in / Sign up

Export Citation Format

Share Document