Research on the influence of the suction force on spherical particles in suction flow

Author(s):  
Junhong Li ◽  
Qinghui Lai ◽  
Wei Su ◽  
Yuerong Xie ◽  
Zhaoguo Zhang
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1938 ◽  
Author(s):  
Guocheng Zhao ◽  
Longfei Xiao ◽  
Tao Peng ◽  
Mingyuan Zhang

Hydraulic collecting is the key technology in deep sea mining and dredging engineering. It determines economic benefits of the project and environmental issues. However, mechanistic studies of hydraulic collecting are rarely described. In this study, the mechanism of collecting spherical particles is researched by dimensional analysis and experimental study. The experimental system is established to carry out three kinds of tests including 253 different test cases. The empirical model of collecting performance prediction is established by the tests of vertical force characteristics and vertical incipient motion characteristics of particles in suction flow field. The results show that the vertical suction force coefficient (Cvs) decreases exponentially with the ratio of bottom clearance to diameter of the particle (h/d), increases linearly with the ratio of diameter of the suction pipe to diameter of the particle (D/d), and is nearly independent of Reynolds number (Re). The empirical formula of vertical force and criterion-formula of vertical incipient motion of particles are obtained with the maximum tolerance less than 15%. The phenomenon that the vortex could help strengthen the suction force was observed in the tests. In addition, the characteristics of suction flow field were obtained by flow visualization tests, and applied to explain the force characteristics of particles in the suction flow field.


Author(s):  
Guocheng Zhao ◽  
Haining Lu ◽  
Longfei Xiao ◽  
Jingchao Hu

Abstract Turbulent suction pipe flow around a near-wall ellipsoid nodule, as basic research of polymetallic nodule hydraulic collection, is investigated numerically and experimentally in this paper. Seven ellipsoids with axe ratios (a/b) ranging from 1 to 2 are considered as nodule models to reveal the shape effect on the characteristics of suction forces and suction flow field. Methods of particle image velocimetry (PIV) and dye tracing were used to visualize the suction flow field. The results indicate that: (1) suction force coefficients increase with a/b; (2) the shape effect is more significant in the cases with smaller ratios of bottom clearance to semi-thickness of the ellipsoid (h/c); (3) the weak vortex shedding in suction flow results in small-amplitude fluctuations of time-history suction forces; (4) the detached-eddy simulation (DES) method based on shear stress transport (SST) model is validated to be accurate and feasible for predicting the suction forces and suction flow field. It is expected to provide references for the design of nodule pick-up devices and to help us further understand the mechanism of hydraulic collection.


2021 ◽  
pp. 1-39
Author(s):  
Hongxin Zhang ◽  
Shaowen Chen

Abstract The influence of pulsed suction (PS) on flow separation and aerodynamic performance in a highly loaded compressor cascade is experimentally studied herein. The excitation frequency is investigated as it determines the effectiveness of PS in flow control. Low suction flow rates are examined to analyze the potential of PS in providing a satisfactory cascade performance. For comparison, the corresponding parameters of steady continuous suction (SCS) are studied as well. Oil flow visualizations and steady and unsteady pressure data are used to characterize the control effects of SCS and PS. The experimental results validate the efficacy of PS in controlling flow separation, even at a reduced suction flow rate of 0.1%. It suppresses passage vortex is suppressed, improving aerodynamic performance. PS provides a better control effect than SCS at different excitation parameters, which can be attributed to twofold main reasons: first, at the same suction flow rate, PS has a larger suction momentum than SCS during the suction phase, resulting in a stronger suction force and having a more profound effect on the flow characteristics; and second, owing to the introduction of pulsed excitation to the suction, PS creates additional vortex structures that energize the boundary layer by transporting high momentum free-stream fluid near the wall. PS is also effective at a higher incidence angle, but its control effect is reduced.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Sign in / Sign up

Export Citation Format

Share Document