Noonan syndrome associated congenital hypertrophic cardiomyopathy and the role of sarcomere gene mutations

2007 ◽  
Vol 24 (1) ◽  
pp. 75-76 ◽  
Author(s):  
V.A. Joshi ◽  
A.E. Roberts ◽  
R.S. Kucherlapati
Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 947 ◽  
Author(s):  
Martina Caiazza ◽  
Marta Rubino ◽  
Emanuele Monda ◽  
Annalisa Passariello ◽  
Adelaide Fusco ◽  
...  

In this report, an atypical case of Noonan syndrome (NS) associated with sarcomeric hypertrophic cardiomyopathy (HCM) in a 33-year-old patient was described. Genetic testing revealed two different disease-causing mutations: a mutation in the PTPN11 gene, explaining NS, and a mutation in the MYBPC3 gene, known to be associated with HCM. This case exemplifies the challenge in achieving a definite etiological diagnosis in patients with HCM and the need to exclude other diseases mimicking this condition (genocopies or phenocopies). Compound heterozygous mutations are rare but possible in HCM patients. In conclusion, this study highlights the important role of genetic testing as a necessary diagnostic tool for performing a definitive etiological diagnosis of HCM.


2019 ◽  
Vol XIV (1) ◽  
Author(s):  
A.M. Radzhabova ◽  
S.V. Voloshin ◽  
I.S. Martynkevich ◽  
A.A. Kuzyaeva ◽  
V.A. Shuvaev ◽  
...  

2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


2021 ◽  
Vol 4 (2) ◽  
pp. e000196
Author(s):  
Yue Wu ◽  
Xiaosi Jin ◽  
Yuhao Zhang ◽  
Jing Zheng ◽  
Rulai Yang

Congenital heart disease (CHD) is the most common of congenital cardiovascular malformations associated with birth defects, and it results in significant morbidity and mortality worldwide. The classification of CHD is still elusive owing to the complex pathogenesis of CHD. Advances in molecular medicine have revealed the genetic basis of some heart anomalies. Genes associated with CHD might be modulated by various epigenetic factors. Thus, the genetic and epigenetic factors are gradually accepted as important triggers in the pathogenesis of CHD. However, few literatures have comprehensively elaborated the genetic and epigenetic mechanisms of CHD. This review focuses on the etiology of CHD from genetics and epigenetics to discuss the role of these factors in the development of CHD. The interactions between genetic and epigenetic in the pathogenesis of CHD are also elaborated. Chromosome abnormalities and gene mutations in genetics, and DNA methylations, histone modifications and on-coding RNAs in epigenetics are summarized in detail. We hope the summative knowledge of these etiologies may be useful for improved diagnosis and further elucidation of CHD so that morbidity and mortality of children with CHD can be reduced in the near future.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
A. J. Ashwal ◽  
Sudhakar Rao Mugula ◽  
Jyothi Samanth ◽  
Ganesh Paramasivam ◽  
Krishnananda Nayak ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1047
Author(s):  
Kohsuke Shirakawa ◽  
Motoaki Sano

Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.


2005 ◽  
Vol 83 (10) ◽  
pp. 837-837 ◽  
Author(s):  
Andreas Perrot ◽  
Hajo Schmidt-Traub ◽  
Bernard Hoffmann ◽  
Matthias Prager ◽  
Nana Bit-Avragim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document