Epidermal features allowing identification of evolutionary lineages in the Ocotea complex (Lauraceae)

Author(s):  
Dimitrij Trofimov ◽  
Jens G. Rohwer
2019 ◽  
Vol 158 (4) ◽  
pp. 213-224 ◽  
Author(s):  
Natália M. Travenzoli ◽  
Bárbara A. Lima ◽  
Danon C. Cardoso ◽  
Jorge A. Dergam ◽  
Tânia M. Fernandes-Salomão ◽  
...  

Stingless bees of the genus Melipona are subdivided into 4 subgenera called Eomelipona, Melikerria, Melipona sensu stricto, and Michmelia according to species morphology. Cytogenetically, the species of the genus Melipona show variation in the amount and distribution of heterochromatin along their chromosomes and can be separated into 2 groups: the first with low content of heterochromatin and the second with high content of heterochromatin. These heterochromatin patterns and the number of chromosomes are characteristics exclusive to Melipona karyotypes that distinguish them from the other genera of the Meliponini. To better understand the karyotype organization in Melipona and the relationship among the subgenera, we mapped repetitive sequences and analyzed previously reported cytogenetic data with the aim to identify cytogenetic markers to be used for investigating the phylogenetic relationships and chromosome evolution in the genus. In general, Melipona species have 2n = 18 chromosomes, and the species of each subgenus share the same characteristics in relation to heterochromatin regions, DAPI/CMA3 fluorophores, and the number and distribution of 18S rDNA sites. Microsatellites were observed only in euchromatin regions, whereas the (TTAGG)6 repeats were found at telomeric sites in both groups. Our data indicate that in addition to the chromosome number, the karyotypes in Melipona could be separated into 2 groups that are characterized by conserved cytogenetic features and patterns that generally are shared by species within each subgenus, which may reflect evolutionary constraints. Our results agree with the morphological separation of the Melipona into 4 subgenera, suggesting that they must be independent evolutionary lineages.


2020 ◽  
pp. 1-15
Author(s):  
Zhiwei Yuan ◽  
Wen Guo ◽  
Dan Lyu ◽  
Yuanlin Sun

Abstract The filter-feeding organ of some extinct brachiopods is supported by a skeletal apparatus called the brachidium. Although relatively well studied in Atrypida and Athyridida, the brachidial morphology is usually neglected in Spiriferida. To investigate the variations of brachidial morphology in Spiriferida, 65 species belonging to eight superfamilies were analyzed. Based on the presence/absence of the jugal processes and normal/modified primary lamellae of the spiralia, four types of brachidium are recognized. Type-I (with jugal processes) and Type-II (without jugal processes), both having normal primary lamellae, could give rise to each other by losing/re-evolving the jugal processes. Type-III, without jugal processes, originated from Type-II through evolution of the modified lateral-convex primary lamellae, and it subsequently gave rise to Type-IV by evolving the modified medial-convex primary lamellae. The evolution of brachidia within individual evolutionary lineages must be clarified because two or more types can be present within a single family. Type-III and Type-IV are closely associated with the prolongation of the crura, representing innovative modifications of the feeding apparatus in response to possible shift in the position of the mouth towards the anterior, allowing for more efficient feeding on particles entering the mantle cavity from the anterior gape. Meanwhile, the modified primary lamellae adjusted/regulated the feeding currents. The absence of spires in some taxa with Type-IV brachidium might suggest that they developed a similar lophophore to that in some extant brachiopods, which can extend out of the shell.


1988 ◽  
Vol 125 (4) ◽  
pp. 349-362 ◽  
Author(s):  
J. F. Miller

AbstractThe Cambrian–Ordovician Boundary is recognized at different horizons on various continents by utilizing several fossil groups. Conodonts are abundant, diverse, and less provincial and facies-controlled than other fossils in this interval; many species are widespread and some are cosmopolitan. Strata representing the Cambrian–Ordovician Boundary interval from Asia, Australia, and North America can be correlated easily when those strata are from cratonal or shelf environments. Strata from slope facies have fewer conodonts, fewer taxa, and taxa may have different ranges compared with cratonal and shelf facies. It may be easier to correlate intercontinentally within cratonal/shelf facies than to correlate intracontinentally from cratonal/shelf facies to slope facies.A new hierarchical arrangement of conodont interval zones and subzones is proposed for western North America. These include the Proconodontus tenuiserratus Zone, the P. posterocostatus Zone (new), the P. muelleri Zone (new), the Eoconodontus Zone (new, with Eoconodontus notchpeakensis and Cambrooistodus minutus Subzones), the Cordylodus proavus Zone (emended, with Hirsutodontus hirsutus, Fryxellodontus inornatus, and Clavohamulus elongatus Subzones), the Cordylodus intermedius Zone (new, with Hirsutodontus simplex and Clavohamulus hintzei Subzones), the Cordylodus lindstromi Zone (new), and Cordylodus angulatus Zone (new).The boundary point for the base of the Ordovician System will be chosen so as to coincide with a correlatable conodont zonal boundary; other fossil groups will support correlation of this boundary point. Three alternative horizons are being considered. The base of the Cordylodus proavus Zone is the most distinctive but is regarded by some as older than is appropriate for the base of the Ordovician. The base of the Cordylodus intermedius Zone is recognizable by faunal changes in several evolutionary lineages at a level that is slightly younger than the presently recognized boundary in Australia, North America, and parts of Asia but slightly older than the base of the Tremadoc Series of Europe. The base of the C. lindstromi Zone can be recognized in most areas by the lowest occurrence of the nominate species, which is of questioned taxonomic validity and uncertain biostratigraphic utility; this horizon is closest to the base of the Tremadoc Series of Europe.Choice of a stratotype section has been narrowed to the Cow Head Group in Newfoundland, eastern Canada; and to the Fengshan and Yehli formations in Jilin Province, northeastern China. The Cow Head Group was deposited on and near the base of the continental slope. Erosion by debrisslide breccias resulted in a significant hiatus near the boundary interval in the Broom Point sections, a condition contrary to guidelines for choice of boundary sections. This may be less of a problem in other sections, such as Green Point. The Dayangcha section in China was deposited on the outer part of a continental shelf and has acritarchs, conodonts, graptolites and trilobites. Additional study of the China section is needed to document fully the ranges of critical conodont taxa.


Virology ◽  
1990 ◽  
Vol 175 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Paul A. Rota ◽  
Teresa R. Wallis ◽  
Maurice W. Harmon ◽  
Jennifer S. Rota ◽  
Alan P. Kendal ◽  
...  

Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 393-399 ◽  
Author(s):  
Spencer V Muse ◽  
Brandon S Gaut

Even when several genetic loci are used in molecular evolutionary studies, each locus is typically analyzed independently of the others. This type of approach makes it difficult to study mechanisms and processes that affect multiple genes. In this work we develop a statistical approach for the joint analysis of two or more loci. The tests we propose examine whether or not nucleotide substitution rates across evolutionary lineages have the same relative proportions at two loci. Theses procedures are applied to 33 genes from the chloroplast genomes of rice, tobacco, pine, and liverwort. With the exception of five clearly distinct loci, we find that synonymous substitution rates tend to change proportionally across genes. We interpret these results to be consistent with a “lineage effect” acting on the entire chloroplast genome. In contrast, nonsynonymous rates do not change proportionally across genes, suggesting that locus-specific evolutionary effects dominate patterns of nonsynonymous substitution.


1970 ◽  
Vol 16 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
A.K.M. Golam Sarwar ◽  
Hasna Hena Begum ◽  
Toshiaki Ito

Not available.Keywords: Leaf epidermis; Rice; Scanning electron microscopy (SEM); Slender macro hair. DOI: 10.3329/bjpt.v16i2.3931 Bangladesh J. Plant Taxon. 16(2): 177-180, 2009 (December)


2018 ◽  
Vol 14 (11) ◽  
pp. 20180498 ◽  
Author(s):  
Sofia Paraskevopoulou ◽  
Ralph Tiedemann ◽  
Guntram Weithoff

Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi . We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi . This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.


Sign in / Sign up

Export Citation Format

Share Document